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V-Edge: Virtual Edge Computing as an Enabler for
Novel Microservices and Cooperative Computing

Falko Dressler, Carla Fabiana Chiasserini, Frank H.P. Fitzek, Holger Karl, Renato Lo Cigno, Antonio Capone,
Claudio Casetti, Francesco Malandrino, Vincenzo Mancuso, Florian Klingler, Gianluca Rizzo

Abstract—As we move from 5G to 6G, edge computing is one of
the concepts that needs revisiting. Its core idea is still intriguing:
instead of sending all data and tasks from an end user’s device
to the cloud, possibly covering thousands of kilometers and
introducing delays that are just owed to limited propagation
speed, edge servers deployed in close proximity to the user,
e.g., at some 5G gNB, serve as proxy for the cloud. Yet this
promising idea is hampered by the limited availability of such
edge servers. In this paper, we discuss a way forward, namely
the virtual edge computing (V-Edge) concept. V-Edge bridges the
gap between cloud, edge, and fog by virtualizing all available
resources including the end users’ devices and making these
resources widely available using well-defined interfaces. V-Edge
also acts as an enabler for novel microservices as well as
cooperative computing solutions. We introduce the general V-
Edge architecture and we characterize some of the key research
challenges to overcome, in order to enable wide-spread and even
more powerful edge services.

I. INTRODUCTION

New-generation mobile networks are envisioned to provide
the computational, memory, and storage resources needed to
run services required by diverse third parties (referred to as
vertical industries or verticals). Each service is associated with
specific requirements, quantified as key performance indicators
(KPIs). To this end, networks will require a high degree of
flexibility and fully automated operations, with a drastically
reduced service deployment time. Essential components to
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Figure 1. The V-Edge concept: Abstraction of the physical resources of the
cloud back-end, the 5G core and RAN, as well as users and machines. All
components provide (and may use) resources for edge computing and they
may participate in a local, distributed orchestration on short time-scale, while
global optimization and other non-real-time operations can be performed in
the cloud back-end.

achieve these goals are softwarization of both networking and
services using network function virtualization (NFV) [1]–[3]
and the ability to store and process data close to the end
user leveraging the so-called edge computing paradigm [4].
Note that edge computing is not just about classic multi-access
edge computing (MEC) [4], [5]; rather, the network edge has
become the convergence point of data processing, caching, and
communication [6], which makes service provisioning at the
edge one of the key challenges in future networks.

Network virtualization, greatly supported by the current
5G/6G standardization and research beyond it, pushes NFV to
merge with the concept of microservices to improve practicality,
universality, and automation. Service ubiquity, resilience, and
low latency are emerging as the ultimate goals – following up
the recent work in the context of the Tactile Internet [7], [8].
To achieve these goals, networks are progressively integrating
machine learning (ML) [9] in two main ways. First, an
increasing number of user applications include ML models for
a smarter application behavior, higher ability to adapt to user’s
preferences, and more effective interaction between users and
machines. Second, ML-based approaches have become common
in automatic network management, resource orchestration, as
well as predicting a wide range of parameters (e.g., wireless
channel properties, users’ behavior, service demand).

Given these emerging trends, the network edge is turning into
an enabler between the cloud and a fully-distributed machine-
to-machine (M2M) network, hosting virtualized network func-
tions and user applications, to meet both service providers’ and
users’ needs.
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Table I
TYPICAL NODES PARTICIPATING IN V-EDGE CLUSTERS

Stationary / infrastructure-based systems
Type CPU Storage Network Time available

ISP-operated MEC server high-performance multi-core 1− 100TB 0.1− 10Gbit/s years
privately operated MEC server multi-core 1− 10TB 0.1− 1Gbit/s weeks
Wi-Fi APs single core 0.1− 100GB 0.1− 1Gbit/s months

Mobile / opportunistic systems
Type CPU Storage Network Time available

Moving car low-end multi-core 0.1− 1TB 0.1− 1Gbit/s 1− 5min
Parked car low-end multi-core 0.1− 1TB 0.1− 1Gbit/s 0.5− 24 h
Fully autonomous shuttle high-performance multi-core 1− 10TB 0.1− 1Gbit/s 1− 30min
User with smartphone single- to multi-core 1− 100GB 0.1− 1Gbit/s 5− 15min

This work introduces the virtual edge computing (V-Edge)
concept. It takes advantage of the flexibility offered by network
softwarization and NFV to integrate in an opportunistic and
dynamic manner the highly heterogeneous set of resources
available locally at the edge (e.g., computing, storage, and
communication resources), while guaranteeing seamless and
QoS-aware service provisioning to users in a variety of verticals.
Further, it jointly uses such resources for any virtualized
function of a user application.

A schematic representation of the V-Edge concept is depicted
in Figure 1. Compared to 5G and traditional edge computing,
the system comprises dynamic resources: CPUs, connectivity,
and storage capacity come and go as users do, carrying
the corresponding devices. Thus, we have to move from
allocating static resources to dynamic users and applications
to allocating resources that are dynamic as well. An example
is the integration of cars not only as service users, but also
as service providers such as explored in the vehicular micro-
cloud concept [10]. V-Edge goes well beyond initial activities
towards distributed computing and data storage, realizing a
full and harmonic integration between infrastructure-based
communication networks and mobile edge systems at the
resource level, as well as between user applications and network
functions at the service layer.

In V-Edge, part of the orchestration of resources and tasks
needs to be done at the edge on rather short time scales to
cope with resource volatility and dynamics. The back-end
cloud, instead, can be used for global optimization on longer
time scales. Following current ML approaches to 5G and edge
computing [9], V-Edge will also be inherently learning-based,
supporting both user applications and network functions. V-
Edge can implement privacy-preserving, distributed approaches
such as federated learning [11]) and effectively transfer trained
model where and as needed.

Our main contributions can be summarized as follows:

• we characterize the need to go beyond classic MEC for
higher scalability, resilience, and flexibility;

• we introduce the conceptual architecture of V-Edge
making consequent use of virtualization to deal with the
high degree of dynamics in the network; and

• we discuss relevant research questions to be solved to
make V-Edge reality.

II. THE V-EDGE ECOSYSTEM

Before outlining the virtual edge computing architecture,
we introduce the underlying basic components of the V-Edge
eco-system, including the major services it can support.

a) Users: As in conventional systems, users still con-
tribute to the traffic demand while using edge-based applica-
tions. In V-Edge, users may have a dual representation in the
system as edge users but also as resource providers.

b) Resources: The resources to satisfy the user demand,
network-wise and application-wise, are now provided by an
increasing variety of devices ranging from the cloud to ISP-
operated edge servers, and even to community-operated edge
devices and to smaller IoT systems. V-Edge thus goes well
beyond classic MEC, by dropping the differentiation between
cloud and edge and fog, and opportunistically recruiting local,
already existing – yet possibly unused – resources. In V-Edge,
even small “fog” devices are conceptually turned into “edge
servers” to provide functions to third parties. A list of typical
V-Edge computational, storage, and networking resources is
provided in Table I, which also indicates the average time each
kind of edge node will be available in a given location. This
results in dynamic scenarios – classic MEC assumes dynamics
in terms of users and their tasks coming and going. Now, also
the available edge computing resources come and go in a very
dynamic way, and they can be seen as constituting a virtualized
edge server with time-varying resource availability.

c) Services and Functions: Network services, and often
user applications, need to be deployed within the V-Edge. The
classes of user applications that can benefit most from a virtual
edge implementation are:

• services with tight latency constraints or whose support
with dedicated static infrastructure would have brought
too high CAPEX, e.g., cooperative (automated) driving
and UAV control, in need of capillary local edge support
even out of cities;

• services that may exhibit bursts of demand of computing
tasks, e.g., due to “flash crowds”;

• non-latency-constrained applications such as computing
tasks for situation awareness, distributed video processing,
and event detection;

• internet of things (IoT) applications like monitoring tasks,
where local data have to be pre-processed for immediate
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Figure 2. V-Edge architecture: Logical resources from mobile users and
infrastructure-based systems (e.g., edge servers co-located with a gNB),
are aggregated into clusters. Multiple clusters are appropriately coordinated
and microservices can migrate from one cluster to another to optimize the
service location. Resource management is done by an orchestrator, which may
interwork with others, controlling neighboring clusters, to migrate services.

use or the transferring of large amounts of data to the
cloud would require too much bandwidth;

• augmented reality (AR), and in general extended reality
(XR), applications, as well as all six degrees of freedom
(6DoF) immersive technology that require both low latency
and large data rate;

• ML applications making use of the ML as a service [12]
concept, which has indeed emerged as a new paradigm,
whereby trained or pre-trained models are provided
for making decisions of different type and in different
contexts.

d) Orchestrator: To complete the above functions, re-
source and service orchestration is needed. Resource orchestra-
tion can be both reactive (which may sometimes be too late) or
proactive, so that resources, and the functions mapped thereon,
can naturally follow demand in space and time. We remark
that the orchestration itself becomes one of the tasks to be
distributed and executed within the virtual edge, similarly in
this respect to user applications.

The orchestrator (see Figure 2) has to observe and monitor
nodes and their computing and communication resources, and
schedule them for current functions and microservices. Machine
learning will help to make such decision with little and often
impaired information about the available edge components.
From an architectural perspective, the orchestrator can be
centralized at a (physical) edge server (or even in the cloud,
with the risk of additional problems due to the inherent
communication delay), or decentralized through hierarchically-
coordinated clusters of nodes participating in the V-Edge. In
realistic deployments, a partially distributed solution may be
preferred for better resilience and responsiveness of the overall
system.

e) Architecture: The architecture of a V-Edge system
enables the interaction between the above described basic
components, as illustrated in Figures 1 and 2. A key feature
of the V-Edge architecture is that users are virtually clustered
so as to provide resources qualitatively equivalent to the ones
provided by the infrastructure. This cluster-based organization

is meant to facilitate and optimize resource management while
providing resiliency and flexibility, like done, e.g., in the
context of vehicular micro-clouds [10]. Services and network
functions can be instantiated in a cluster and then migrated
to another one dynamically, under the coordination of the
orchestrator, and as a consequence of the learning process that
underpins its operations. Figure 2 zooms into the architecture
outlining interconnected mobile and infrastructure clusters
that are orchestrated together. The distributed nature of all
resources additionally requires novel concepts and interfaces
for distributed orchestration and for the cooperation between
orchestrators, and even between multiple such clusters, edge
components, and the back-end cloud servers.

III. KEY TECHNOLOGIES AND RESEARCH CHALLENGES

Existing work on edge computing has predominantly focused
on resource allocation on edge servers that may experience
dynamic load, but whose deployment is static or only changes
on a long time scale. As mentioned, V-Edge goes well beyond
and lifts this limitation by allowing also servers to be mobile,
thus, computational, storage, and communication resources
appear and leave at any time. In this section, we identify the
most relevant key technologies that can make V-Edge a reality.

A. Performance Aspects

Similarly to non-virtual edge clouds, a V-Edge system
needs to support KPIs such as high throughput, low latency,
low service rejection rate, high utilization, short provisioning
times, high dependability, and easy management, as well as to
maximize the number of satisfied users and expected revenue
compared to capital or operational expenditure (CAPEX,
OPEX). There exists, however, a differentiating factor between
V-Edge and non-virtual edge clouds: the node churn rate in the
underlying network and the evolution of the network topology
in space and time due to devices joining and leaving the V-
Edge. Here, churn rate is not a performance metric, rather, a
system characteristic with a twofold impact. On the one hand,
it may lead to a degradation in the V-Edge KPIs, which could
be characterized as the price of virtuality; on the other hand,
the contribution of mobile devices to the V-Edge allows for
significant CAPEX and OPEX savings.

While this is a fair perspective from an end user’s or
investor’s perspective, it can fall short when comparing different
V-Edge realizations against each other. First, more fine-grained
metrics would be needed in this case to characterize the per-
formance of services as well as management and orchestration
systems (e.g., packet latency vs. service initiation time, or traffic
throughput vs. number of service deployments per second).
Second, suitable metrics should be selected to highlight the
existing trade-offs in performance. A typical example is the
overhead introduced by state synchronization to ward off
service interruptions, compared against the degradation in the
users’ quality of experience caused by those same service
interruptions.

We argue that different trade-offs can be achieved depending
upon how a V-Edge is configured, obtaining a Pareto front
of optimal trade-offs. Further, as exemplified in Figure 3,
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Pareto set for
low churn

Pareto set for
high churn

Benefit
(e.g., service

interruptions)

Overhead
(e.g., synchronization)

Churn rate

Figure 3. Services KPIs in the context of the V-Edge concept.

different Pareto fronts may emerge for different churn rates and
devices’ connectivity patterns. Such complex dependencies and
entanglement between diverse aspects of the V-Edge cannot be
captured through the existing performance metrics; they rather
call for a novel, complex notion of “figure of merit”.

B. Orchestration of Microservices

Network softwarization is taking over the data, control,
and management planes as well as different protocol layers.
Examples of data plane virtualization include virtual routers
and user applications, while a relevant control plane example
is the O-RAN control of the radio interface. As mentioned
in Section II, virtual network functions (VNFs) stemming
from such softwarization can be seen as (components of)
microservices, which need to be properly and jointly orches-
trated whenever they compete for the same physical resources.
Further, depending on their type and logic, microservices can
be executed in different execution environments with varying
trade-offs in terms of capabilities and performance.

Thus, an orchestrator for a V-Edge system needs to provide
the same functionality as any of the orchestrators proposed
for an ordinary edge infrastructure. Namely, it has to map
VNFs from microservices to the available resources, taking
into account not only their requirements but also the computing
and communication capabilities of the device on which they
are mapped and the performance impact of the services that
leverage such microservice instances. This is, however, not the
only issue a V-Edge orchestrator faces. Indeed, it has to cope
with the network and node churn: quickly changing network
conditions and node availability. A V-Edge orchestrator has to
be aware of this churn as well as of the services’ ability to deal
or not to deal with it (e.g., stateless vs. stateful services) and
their temporal and spatial availability requirements – aspects
that are exacerbated in V-Edge with respect to conventional
scenarios. This fact invalidates any conventional, long-term
approach and demands for a more agile, adaptive solution.

We address this challenge by leveraging ML techniques,
conceiving a multi-faceted framework that can effectively
deal with the multitude of necessary observations and actions.
Specifically, the proposed V-Edge orchestration framework
includes:

Figure 4. The V-Edge tetrahedron orchestrator (VETO) concept.

1) a network model, partially based on explicit information
(e.g., battery or computing capacity of a device) and
partially learned information (e.g., movement patterns
and sojourn time), to account for individual devices’
capabilities and behavior;

2) a service model, partially provided by the VNF graph
composing the service and the VNFs’ specifications,
partially learned (e.g., how disruption-tolerant is a service,
how does a disruption affect the users’ quality of
experience); we underline that some information that
could be provided by the service developer might actually
need to be learned in practice and that a continuous
update of the service understanding is necessary;

3) the orchestrator as such: learning scaling, placement,
routing, migration, and other actions based on the network
and service models;

4) an Auto-ML component: since the above three models
need to be continuously trained in the field and since
properly parameterizing training is hard, an Auto-ML
component is necessary to tune training hyperparameters.

The four components of the framework are connected in
a tetrahedron as depicted in Figure 4, as they all depend on
each other; we dub such a framework V-Edge tetrahedron
orchestrator (VETO). VETO provides a functional separation
of a learning-based orchestrator. Some important challenges,
however, remain to be addressed for a detailed framework
design. In particular, it is critical to: (i) learn correlation
between network and service models, e.g., between user spatial
distribution and service demand dynamics, (ii) identify the
hyperparameters to be learned by the Auto-ML component,
(iii) define the time scale over which the different components
should operate, (iv) understand with which granularity instances
of VETO should be deployed to deal with different geographical
areas to make the system scalable.

C. Cooperative Computing

Cloud computing has become extremely popular due to
its flexible (cost) structures and dynamic resource allocation;
overall, it has been a door opener for many novel services.
Edge computing and service placement in close proximity of
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Figure 5. Placement of mobile edge computing for connected vehicles.

the user enabled a new kind of services particularly focusing on
low latency and often referred to in the context of the Tactile
Internet [7], [8].

However, latency is not only caused by propagation delays.
Other factors such as computing delay also play a dominant
role so that the optimal placement of a function is not always at
the edge [13]. Figure 5 illustrates the problem in the application
scenario of connected vehicles, highlighting different placement
options. The V-Edge architecture indeed allows for vertical and
horizontal placement and distribution of edge infrastructure.

A vital research field is resilience in such agile environments.
Virtualization of all edge computing components introduces
the risk of service starvation: tasks currently offloaded to
virtual edge components may not be completed, or not be
completed in time. In communications and storage, replication
and redundancy is often used to overcome such problems, and,
even though not efficient in terms of resource utilization, this
can greatly increase resilience of the system. Recent advances
in the field of coding, in particular network coding and coded
caching, help achieving efficiency, resilience, and latency at
the same time. Unfortunately, these ideas do not immediately
apply to computing. Replication has to deal with erroneous
feedback information and the state of the cooperative computing
instances may diverge. Microservices running on cooperative
machines improve resilience, but not efficiency.

Coded computing may provide solutions for cooperative
computing [14]. In order to enable cooperative computing in
V-Edge, the following phases are to be considered.

• Phase 0 is about hierarchical mobile edge clouds as
described already for vehicular micro clouds [10]. Edge
nodes are interconnected in form of clusters in the V-Edge
architecture to distribute tasks among themselves using
the backend data center as a fallback solution. All relevant
meta data describing tasks and associating end users need
to be synchronized among all participating nodes in a
hierarchical manner.

• Phase 1 uses a coding-based approach. Similar to network
coding for storage and communication, also computing
tasks can be coded to avoid outages if physical nodes
leave the virtual edge [14]. Coded computing is normally
used between neighboring nodes such as mobile robots or
cars, but it can be extended to cooperation among multiple

edge clouds, adding resilience and performance.
• In a final Phase 2, such coding-based distributed com-

puting will be inherently integrated with new approaches
to resource management. Current resource management
solutions focus on communication, sometimes also incor-
porating computational resources, but still in a simplistic
way.

For cooperative computing, either explicit communication
between participating nodes in the V-Edge or mediation
by hierarchies up to the backend data center, or implicit
communication by means of inference is needed. Figure 5
illustrates the concept of localized edge clouds interconnected
in a hierarchical manner to perform such cooperative computing.
Research questions range from the identification of required
data, to finding paths the data has to travel along, to data fusion,
and compressed sensing. Cooperative computing, of course,
has to rely on distributed learning concepts. Here, federated
learning will play a dominant role because of its capability to
train distributedly and then to merge the resulting models in
a privacy preserving manner [11], [15]. The grand challenge
here is sparsification of models in order to reduce the overhead
resulting from model distribution.

IV. DISCUSSIONS AND CONCLUSION

Revisiting the motivation for our virtual edge computing
(V-Edge) approach, in the following we discuss the benefits of
this novel architecture and what cannot be done with traditional
cloud, MEC, and possibly fog computing. From a paradigmatic
point of view, there are many reasons to make use of V-Edge,
though some fundamental problems need to be addressed before
implementation.

From a policy perspective, the V-Edge concept addresses
many problems that have hampered (mobile) global communica-
tions in the past decades. As discussed above, V-Edge requires
necessarily open solutions like O-RAN, or similar ones, at
different architectural levels. Openness in telecommunications
and computing has proven to be one of the key enablers
for innovation and economic growth; thus, the V-Edge vision
naturally becomes the melting pot for novel services, solutions,
start-ups, and technological evolution. This consideration alone
should be enough for all actors, and standardization bodies in
particular, to embrace V-Edge and mold future business based
on this equitable architecture.

Scalability is a more technical reason to foster V-Edge.
5G/6G architectures, together with computation (think about
GPUs) and local access (WiFi 6 and the upcoming WiFi 7),
have shown that only extreme distribution and densification
of resources can meet the increasing requirements on com-
munications and services. V-Edge is bringing this evidence
from subliminal awareness to architectural design, highlighting
and formalizing the interdependence between communications,
computing, management (resource allocation and scheduling),
and service KPIs. So doing, V-Edge clarifies the technical
challenges that need to be addressed for success, first of all in
the realm of ML, acknowledging that traditional models cannot
be applied to a system whose evolution is not predictable a
priori. It also allows for a level of adaptability and flexibility
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that empowers the autonomous evolution of functions, services,
and management models through autonomous learning and
self-development.

Efficient resource utilization is going hand in hand with
scalability to make advanced services more accessible and, thus,
affordable by a wider sector of the society. If, on the one hand,
a distributed architecture is the only solution to scalability, on
the other hand, it is well known that uncoordinated distribution
makes an inefficient use of the resources, from storage and
computing power, down to communications and energy. V-
Edge proposes an advanced, ML-oriented orchestration that
enables the efficient and dynamic use of resources, especially
leveraging those that go unused for a large part of the time.
An example for all: processing power on autonomous vehicles
when they are parked. The safety requirements of Society
of Automotive Engineers (SAE) Level-5 autonomous driving
require a processing power (CPU and GPU) that is comparable
to several nodes of high performance computing systems, and
this extreme capacity is right there, at the edge, but with
traditional architectures it is impossible to tap it.

Finally, security and privacy need to be considered, which
goes well beyond the scope of this paper. Theoretical computer
science indicates that distributed systems are in general
safer, more secure, and most of all naturally following the
implementation of “privacy by design” principles. V-Edge
clearly matches this indication, with its extreme distribution
and the orchestration of resources coming from different actors
and entities. However, we are also well aware that practical
systems often fail to meet theoretical results, in particular in
the case of security where the complexity of the analysis of
distributed systems may lead to design failures, with severe
consequences. This is a further topic for research and design
towards the V-Edge realization.
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