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Abstract

Motivated by current trends in cloud computing, we study a version of the generalized assignment

problem where a set of virtual processors has to be implemented by a set of identical processors.

For literature consistency, we say that a set of virtual machines (VMs) is assigned to a set of

physical machines (PMs). The optimization criterion is to minimize the power consumed by all the

PMs. We term the problem Virtual Machine Assignment (VMA). Crucial differences with previous

work include a variable number of PMs, that each VM must be assigned to exactly one PM (i.e.,

VMs cannot be implemented fractionally), and a minimum power consumption for each active

PM. Such infrastructure may be strictly constrained in the number of PMs or in the PMs’ capacity,

depending on how costly (in terms of power consumption) it is to add a new PM to the system or

to heavily load some of the existing PMs. Low usage or ample budget yields models where PM

capacity and/or the number of PMs may be assumed unbounded for all practical purposes. We

study four VMA problems depending on whether the capacity or the number of PMs is bounded or

not. Specifically, we study hardness and online competitiveness for a variety of cases. To the best

of our knowledge, this is the first comprehensive study of the VMA problem for this cost function.
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1. Introduction

The current pace of technology developments, and the continuous change in business require-

ments, may rapidly yield a given proprietary computational platform obsolete, oversized, or in-

sufficient. Thus, outsourcing has recently become a popular approach to obtain computational

services without incurring in amortization costs. Furthermore, in order to attain flexibility, such

service is usually virtualized, so that the user may tune the computational platform to its particular

needs. Users of such service need not to be aware of the particular implementation, they only need

to specify the virtual machine they want to use. This conceptual approach to outsourced computing

has been termed cloud computing, in reference to the cloud symbol used as an abstraction of a com-

plex infrastructure in system diagrams. Current examples of cloud computing providers include

Amazon Web Services [EC2, 2012], Rackspace [Rackspace, 2012], and Citrix [Citrix, 2012].

Depending on what the specific service provided is, the cloud computing model comes in

different flavors, such as infrastructure as a service, platform as a service, storage as a service, etc.

In each of these models, the user may choose specific parameters of the computational resources

provided. For instance, processing power, memory size, communication bandwidth, etc. Thus, in a

cloud-computing service platform, various virtual machines (VM) with user-defined specifications

must be implemented by, or assigned to1, various physical machines (PM)2. Furthermore, such

a platform must be scalable, allowing to add more PMs, should the business growth require such

expansion. In this work, we call this problem the Virtual Machine Assignment (VMA) problem.

The optimization criteria for VMA depends on what the particular objective function sought

is. From the previous discussion, it can be seen that, underlying VMA, there is some form of

bin-packing problem. However, in VMA the number of PMs (i.e., bins for bin packing) may be in-

creased if needed. Since CPU is generally the dominant power consumer in a server [Arjona Aroca

et al., 2014a], VMA is usually carried out according to CPU workloads. With only the static power

consumption of servers considered, previous work related to VMA has focused on minimizing the

number of active PMs (cf. [Bellur et al., 2010] and the references therein) in order to minimize

1The cloud-computing literature use instead the term placement. We choose here the term assignment for consis-

tency with the literature on general assignment problems.
2We choose the notation VM and PM for simplicity and consistency, but notice that our study applies to any

computational resource assignment problem, as long as the minimization function is the one modeled here.
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the total static energy consumption. This is commonly known as VM consolidation [Nathuji and

Schwan, 2007; Kusic et al., 2009]. However, despite the static power, the dynamic power con-

sumption of a server, which has been shown to be superlinear on the load of a given computational

resource [Bansal et al., 2009; Gupta et al., 2012], is also significant and cannot be ignored. Since

the definition of load is not precise, we borrow the definition in [Arjona Aroca et al., 2014a] and

define the load of a server as the amount of active cycles per second a task requires, an absolute

metric independent of the operating frequency or the number of cores of a PM. The superlinear-

ity property of the dynamic power consumption is also confirmed by the results in [Arjona Aroca

et al., 2014a]. As a result, when taking into account both parts of power consumption, the use

of extra PMs may be more efficient energy-wise than a minimum number of heavily-loaded PMs.

This inconsistency with the literature in VM consolidation has been supported by the results pre-

sented in [Arjona Aroca et al., 2014a] and, hence, we claim that the way consolidation has been

traditionally performed has to be reconsidered. In this work, we combine both power-consumption

factors and explore the most energy-efficient way for VMA. That is, for some parameters α > 1

and b > 0, we seek to minimize the sum of the α powers of the PMs loads plus the fixed cost b of

using each PM.

Physical resources are physically constrained. A PMs infrastructure may be strictly constrained

in the number of PMs or in the PMs CPU capacity. However, if usage patterns indicate that the PMs

will always be loaded well below their capacity, it may be assumed that the capacity is unlimited.

Likewise, if the power budget is very big, the number of PMs may be assumed unconstrained for

all practical purposes. These cases yield 4 VMA subproblems, depending on whether the capacity

and the number of PMs is limited or not. We introduce these parameters denoting the problem as

(C,m)-VMA, where C is the PM CPU capacity, m is the maximum number of PMs, and each of

these parameters is replaced by a dot if unbounded.

In this work, we study the hardness and online competitiveness of the VMA problem. Specif-

ically, we show that VMA is NP-hard in the strong sense (in particular, we observe that (C,m)-

VMA is strongly NP-complete). Thus, VMA problems do not have a fully polynomial time ap-

proximation scheme (FPTAS). Nevertheless, using previous results derived for more general ob-

jective functions, we notice that (·,m)- and (·, ·)-VMA have a polynomial time approximation

scheme (PTAS). We also show various lower and upper bounds on the offline approximation and
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the online competitiveness of VMA. Rather than attempting to obtain tight bounds for particular

instances of the parameters of the problem (C,m, α, b) we focus on obtaining general bounds,

whose parameters can be instantiated for the specific application. The bounds obtained show in-

teresting trade-offs between the PM capacity and the fixed cost of adding a new PM to the system.

To the best of our knowledge, this is the first VMA study that is focused on power consumption.

Roadmap. The paper is organized as follows. In what remains of this section, we define

formally the (·, ·)-VMA problem, we overview the related work, and we describe our results in

detail. Section 2 includes some preliminary results that will be used throughout the paper. The

offline and online analyses are included in Section 3 and 4 respectively. Section 5 discusses some

practical issues and provides some useful insights regarding real implementation.

1.1. Problem Definition

We describe the (·, ·)-VMA problem now. Given a set S = {s1, . . . , sm} of m > 1 identical

physical machines (PMs) of capacity C; rational numbers µ, α and b, where µ > 0, α > 1 and

b > 0; a set D = {d1, . . . , dn} of n virtual machines and a function ` : D → R that gives the CPU

load each virtual machine incurs3, we aim to obtain a partition π = {A1, . . . , Am} of D, such that

`(Ai) ≤ C, for all i. Our objective will be then minimizing the power consumption given by the

function

P (π) =
∑

i∈[1,m]:Ai 6=∅

(
µ
( ∑
dj∈Ai

`(dj)
)α

+ b

)
. (1)

Let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) = µxα + b otherwise.

Then, the objective function is to minimize P (π) =
∑m

i=1 f(`(Ai)). The parameter µ is used for

consistency with the literature. For clarity we will consider µ = 1 in the rest of the paper. All the

results presented apply for other values of µ.

We also study several special cases of the VMA problem, namely (C,m)-VMA, (C, ·)-VMA,

(·,m)-VMA and (·, ·)-VMA. (C,m)-VMA refers to the case where both the number of available

PMs and its capacity are fixed. (·, ·)-VMA, where (·) denotes unboundedness, refers to the case

where both the number of available PMs and its capacity are unbounded (i.e., C is larger than the

3For convenience, we overload the function `(·) to be applied over sets of virtual machines, so that for any set

A ⊆ D, `(A) =
∑
dj∈A `(dj).
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total load of the VMs that can ever be in the system at any time, or m is larger than the number of

VMs that can ever be in the system at any time). (C, ·)-VMA and (·,m)-VMA are the cases where

the number of available PMs and their capacity is unbounded, respectively.

1.2. Related Work

To the best of our knowledge, previous work on VMA has been only experimental [Chen et al.,

2011; Liu et al., 2012; Mills et al., 2011a; Van den Bossche et al., 2011; Beloglazov et al., 2012;

Espadas et al., 2013] or has focused on different cost functions [Cody and Jr., 1976; Alon et al.,

1997; Bellur et al., 2010; Chandra and Wong, 1975]. First, we provide an overview of previous

theoretical work for related assignment problems (storage allocation, scheduling, network design,

etc.). The cost functions considered in that work resemble or generalize the power cost function

under consideration here. Secondly, we overview related experimental work.

Chandra and Wong [Chandra and Wong, 1975], and Cody and Coffman [Cody and Jr., 1976]

study a problem for storage allocation that is a variant of (·,m)-VMA with b = 0 and α = 2.

Hence, this problem tries to minimize the sum of the squares of the machine-load vector for a fixed

number of machines. They study the offline version of the problem and provide algorithms with

constant approximation ratio. A significant leap was taken by Alon et al. [Alon et al., 1997], since

they present a PTAS for the problem of minimizing the Lp norm of the load vector, for any p ≥ 1.

This problem has the previous one as special case, and is also a variant of the (·,m)-VMA problem

when p = α and b = 0. Similarly, Alon et al [Alon et al., 1998] extended this work for a more

general set of functions, that include f(·) as defined above. Hence, their results can be directly

applied in the (·,m)-VMA problem. Later, Epstein et al [Epstein and Sgall, 2004] extended [Alon

et al., 1998] further for the uniformly related machines case. We will use these results in Section 3

in the analysis of the offline case of (·,m)-VMA and (·, ·)-VMA.

Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scaling in job schedu-

ling [Bansal et al., 2009]. The problem is to schedule the execution of n computational jobs on a

single processor, whose speed may vary within a countable collection of intervals. Each job has

a release time, a processing work to be done, a weight characterizing its importance, and its exe-

cution can be suspended and restarted later without penalty. A scheduler algorithm must specify,

for each time, a job to execute and a speed for the processor. The goal is to minimize the weighted
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sum of the flow times over all jobs plus the energy consumption, where the flow time of a job is the

time elapsed from release to completion and the energy consumption is given by sα where s is the

processor speed and α > 1 is some constant. For the online algorithm shortest remaining process-

ing time first, the authors prove a (3 + ε) competitive ratio for the objective of total weighted flow

plus energy. Whereas for the online algorithm highest density first (HDF), where the density of a

job is its weight-to-work ratio, they prove a (2 + ε) competitive ratio for the objective of fractional

weighted flow plus energy.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost functions of the

flow time, with the only restriction that such function is non-decreasing [Im et al., 2012]. In their

model, a collection of jobs, each characterized by a release time, a processing work, and a weight,

must be processed by a single server whose speed is variable. A job can be suspended and restarted

later without penalty. The authors show that HDF is (2 + ε)-speed O(1)-competitive against the

optimal algorithm on a unit speed-processor, for all non-decreasing cost functions of the flow time.

Furthermore, they also show that this ratio cannot be improved significantly proving impossibility

results if the cost function is not uniform among jobs or the speed cannot be significantly increased.

A generalization of the above problem is studied by Gupta, Krishnaswamy, and Pruhs in [Gupta

et al., 2012]. The question addressed is how to assign jobs, possibly fractionally, to unrelated

parallel machines in an online fashion in order to minimize the sum of the α-powers of the machine

loads plus the assignment costs. Upon arrival of a job, the algorithm learns the increase on the

load and the cost of assigning a unit of such job to a machine. Jobs cannot be suspended and/or

reassigned. The authors model a greedy algorithm that assigns a job so that the cost is minimized

as solving a mathematical program with constraints arriving online. They show a competitive ratio

of αα with respect to the solution of the dual program which is a lower bound for the optimal.

They also show how to adapt the algorithm to integral assignments with aO(α)α competitive ratio,

which applies directly to our (·,m)-VMA problem. References to previous work on the particular

case of minimizing energy with deadlines can be found in this paper.

Similar cost functions have been considered for the minimum cost network-design problem. In

this problem, packets have to be routed through a (possibly multihop) network of speed scalable

routers. There is a cost associated to assigning a packet to a link and to the speed or load of the

router. The goal is to route all packets minimizing the aggregated cost. In [Andrews et al., 2012]

6



and [Andrews et al., 2010] the authors show offline algorithms for this problem with undirected

graph and homogeneous link cost functions that achieve polynomial and poly-logarithmic approx-

imation, respectively. The cost function is the α-th power of the link load plus a link assignment

cost, for any constant α > 1. The same problem and cost function is studied in [Gupta et al.,

2012]. Bansal et al. [Bansal et al., 2012] study a minimum-cost virtual circuit multicast routing

problem with speed scalable links. They give a polynomial-time O(α)-approximation offline al-

gorithm and a polylog-competitive online algorithm, both for the case with homogeneous power

functions. They also show that the problem is APX-hard in the case with heterogeneous power

functions and there is no polylog-approximation when the graph is directed. Recently, Antoniadis

et al. [Antoniadis et al., 2014] improved the results by providing a simple combinatorial algorithm

that is O(logα n)-approximate, from which we can construct an Õ(log3α+1 n)-competitive online

algorithm. The (·,m)-VMA problem can be seen as a especial case of the problem considered

in these papers in which there are only two nodes, source and destination, and m parallel links

connecting them.

To the best of our knowledge, the problem of minimizing the power consumption (given

in Eq.1) with capacity constraints (i.e., the (C,m)-VMA and (C, ·)-VMA problems) has received

very limited attention, in the realm of both VMA and network design, although the approaches

in [Andrews et al., 2010] and [Bansal et al., 2012] are related to or based on the solutions for the

capacitated network-design problem [Chakrabarty et al., 2011].

The experimental work related to VMA is vast and its detailed overview is out of the scope of

this paper. Some of this work does not minimize energy [Cardosa et al., 2011; Machida et al., 2010;

Mishra and Sahoo, 2011] or it applies to a model different than ours (VM migration [Nguyen Van

et al., 2009; Srikantaiah et al., 2008; Beloglazov et al., 2012], knowledge of future load [Mark et al.,

2011; Srikantaiah et al., 2008], feasibility of allocation [Bellur et al., 2010], multilevel architec-

ture [Mills et al., 2011a; Nguyen Van et al., 2009; Jansen and Brenner, 2011; Espadas et al., 2013],

interconnected VMs [Botero et al., 2012], etc.). On the other hand, some of the experimental work

where minimization of energy is evaluated focus on a more restrictive cost function [Viswanathan

et al., 2011; Jansen and Brenner, 2011; Xu and Fortes, 2011].

In [Srikantaiah et al., 2008], the authors focus on an energy-efficient VM placement problem

with two requirements: CPU and disk. These requirements are assumed to change dynamically
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and the goal is to consolidate loads among servers, possibly using migration at no cost. In our

model VMs assignment is based on a CPU requirement that does not change and migration is not

allowed. Should any other resource be the dominating energy cost, the same results apply for that

requirement. Also, if loads change and migration is free, an offline algorithm can be used each time

that a load changes or a new VM arrives. In [Srikantaiah et al., 2008] it is shown experimentally

that energy-efficient VMA does not merely reduce to a packing problem. That is, to minimize the

number of PMs used even if their load is close to their maximum capacity. For our model, we show

here that the optimal load of a given server is a function only of the fixed cost of being active (b)

and the exponential rate of power increase on the load (α). That is, the optimal load is not related

to the maximum capacity of a PM.

1.3. Overview of Results

In this work, we study offline and online versions of the four versions of the VMA problem.

For the offline problems, the first fact we observe is that there is a hard decision version of (C,m)-

VMA: Is there a feasible partition π of the set D of VMs? By reduction from the 3-Partition

problem, it can be shown that this decision problem is strongly NP-complete.

We then show that the (·, ·)-VMA, (C, ·)-VMA, and (·,m)-VMA problems are NP-hard in the

strong sense, even if α is constant. This result implies that these problems do not have FPTAS, even

if α is constant. However, we show that the (·, ·)-VMA and (·,m)-VMA problems have PTAS,

while the (C, ·)-VMA problem can not be approximated beyond a ratio of 3
2
· α−1+( 2

3
)α

α
(unless

P = NP). On the positive side, we show how to use an existing Asymptotic PTAS [Fernandez

de la Vega and Lueker, 1981] to obtain algorithms that approximate the optimal solution of (C, ·)-

VMA. (See Table 1.)

Then we move on to online VMA algorithms. We show various upper and lower bounds on

the competitive ratio of the four versions of the problem. (See Table 1.) Observe that the results

are often different depending on whether x∗ is smaller than C or not. In fact, when x∗ < C, there

is a lower bound of (3/2)2α−1
2α−1 that applies to all versions of the problem. The bounds are given as

a function of the input parameters of the problem, in order to allow for tighter expressions. To

provide intuition on how tight the bounds are, we instantiate them for a realistic 4 value of α = 3,

4The values for α in the servers studied in [Arjona Aroca et al., 2014a] (denoted as Erdos and Nemesis) are close

8



VMA

subprob.
x∗ < C x∗ ≥ C

(C, ·)

offline

ρ ≥ 3
2
α−1+(2/3)α

α ρ ≥ 11
9 ρ ≥ 3

2
α−1+(2/3)α

α ρ ≥ 11
9

ρ < m
m∗

(
1 + ε+ 1

α−1 + 1
m

)
ρ < m

m∗

(
3
2 + ε+ 1

m

)
ρ < 1 + ε+ Cα

b + 1
m ρ < 3

2 + ε+ 1
m

(C, ·)

online

ρ ≥ (3/2)2α−1
2α−1 ρ ≥ 11

7 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b} ρ ≥ 20

17

ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

) ρ ≤ 17
12

(
1 + 1

2`(Ds)

)
ρ ≤ 2b

C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)
ρ ≤ 17

2

(
1 + 1

2`(D)

)
(C,m)

online

ρ ≥ (3/2)2α−1
2α−1 ρ ≥ 11

7 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b} ρ ≥ 20

17

(·, ·)

online

ρ ≥ (3/2)2α−1
2α−1 ρ ≥ 11

7 not applicable
ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

) ρ ≤ 17
12

(
1 + 1

2`(Ds)

)
(·,m)

online
ρ ≥ max{ (3/2)2

α−1
2α−1 , 3α

2α+2+ε} ρ ≥ 11
7 not applicable

ρ ≤ O(α)α In [Gupta et al., 2012]

(·, 2)

online

ρ ≥ max{ 3α

2α+1 ,
(3/2)2α−1

2α−1 , 3α

2α+2+ε} ρ ≥ 11
7 not applicable

ρ = 1 if `(D) ≤ α
√
b/(2α − 2), else

ρ ≤ max{2,
(
3
2

)α−1} ρ ≤ 9
4

Table 1: Summary of bounds on the approximation/competitive ratio ρ. All lower bounds are existential. The number

of PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The number of PMs in an optimal Bin Packing solution

is denoted as m. The load that minimizes the ratio power consumption against load is denoted as x∗. The subset of

VMs with load smaller than x∗ is denoted as Ds. Shaded cells correspond to α = 3, b = 2, and C = 2 on the left and

C = 1 on the right.
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and normalized values of b = 2 and C ∈ {1, 2}. The resulting bounds are shown in Table 1 in

shaded cells. As can be observed, the resulting upper and lower bounds are not very far in general.

2. General Properties of the Model

The following claims will be used in the analysis. We call power rate the power consumed per

unit of load in a PM. Let x be the load of a PM. Then, its power rate is computed as f(x)/x. The

load at which the power rate is minimized, denoted x∗, is the optimal load, and the corresponding

rate is the optimal power rate ϕ∗ = f(x∗)/x∗. Using calculus we get the following observation.

Observation 1. The optimal load is x∗ = (b/(α− 1))1/α . Additionaly, for any x 6= x∗, f(x)/x >

ϕ∗.

The following lemmas will be used in the analysis.

Lemma 1. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance of

the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax 6= ∅ and Ay 6= ∅;

• A′x = Ax ∪ Ay, A′y = ∅, and Ai = A′i, for all i 6= x and i 6= y; and

• `(Ax) + `(Ay) ≤ min{x∗, C}.

Then, P (π′) < P (π).

Proof. Let `(Ai) = x and `(Aj) = y. First we notice that π′ is feasible because x+ y ≤ C. Now,

using that x+ y ≤ x∗, we have

b = (x∗)α(α− 1) ≥ (x+ y)α(α− 1)

> (x+ y)α ≥ (x+ y)α − (xα + yα) (2)

where the second inequality comes from the fact that α > 1. The above inequality is equivalent to

2b+ xα + yα > b+ (x+ y)α, (3)

which implies the lemma.

to 1.5 and 3 and x∗ values of 0.76C and 0.9C respectively.
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From this lemma, it follows that the global power consumption can be reduced by having 2

VMs together in the same PM, when its aggregated load is smaller than min{x∗, C}, instead of

moving one VM to an unused PM. When we keep VMs together in a given partition we say that

we are using Lemma 1.

Lemma 2. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance of

the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax ∪ Ay = A′x ∪ A′y, while Ai = A′i, for all x 6= i 6= y;

• none of Ax, Ay, A′x, and A′y is empty; and

• |`(Ax)− `(Ay)| < |`(A′x)− `(A′y)|.

Then, P (π) < P (π′).

Proof. From the definition of P (·), to prove the claim is it enough to prove that `(Ax)α+`(Ay)
α <

`(A′x)
α + `(A′y)

α. Let us assume wlog that `(Ax) ≤ `(Ay) and `(A′x) ≤ `(A′y). Let us denote

L = `(Ax) + `(Ay) = `(A′x) + `(A′y), and assume that `(Ax) = δ1L and `(A′x) = δ2L. Note that

δ2 < δ1 ≤ 1/2. Then, the claim to be proven becomes

(δ1L)α + ((1− δ1)L)α < (δ2L)α + ((1− δ2)L)α (4)

δα1 + (1− δ1)α < δα2 + (1− δ2)α (5)

Which holds because the function f(x) = xα + (1− x)α is decreasing in the interval (0, 1/2).

This lemma carries the intuition that balancing the load among the used PMs as much as pos-

sible reduces the power consumption.

Corollary 1. Consider a solution π = {A1, . . . , Am} of an instance of the VMA problem with total

load `(D), such that exactly k of the Ax sets, x ∈ [1,m], are non-empty (hence it uses k PMs).

Then, the power consumption is lower bounded by the power of the (maybe unfeasible) solution

that balances the load evenly, i.e.,

P (π) ≥ kb+ k(`(D)/k)α. (6)
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3. Offline Analysis

3.1. NP-hardness

As was mentioned, it can be shown that deciding whether there is a feasible solution for an

instance of the (C,m)-VMA problem is NP-complete or not, by a direct reduction from the 3-

Partition problem. However, this result does not apply directly to the (C, ·)-VMA, (·,m)-VMA,

and (·, ·)-VMA problems. We show now that these problems are NP-hard. We first prove the

following lemma.

Lemma 3. Given an instance of the VMA problem, any solution π = {A1, . . . , Am} where `(Ai) 6=

x∗ for some i ∈ [1,m] : Ai 6= ∅, has power consumption P (π) > ρ∗`(D) = ρ∗
∑

d∈D `(d).

Proof. The total cost of π is P (π) =
∑

i∈[1,m] f(`(Ai)) which, from Observation 1, satisfies

P (π) >
∑

i∈[1,m]:Ai 6=∅

`(Ai)ρ
∗

= ρ∗
∑

i∈[1,m]:Ai 6=∅

∑
d∈Ai

`(d) = ρ∗
∑
d∈D

`(d). (7)

We show now in the following theorem that the different versions of the (C,m)-VMA problem

with unbounded C or m are NP-hard.

Theorem 1. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard, even if

α is constant.

Proof. We show a reduction from 3-Partition defined as follows [Garey and Johnson, 1979], which

is strongly NP-complete.

INSTANCE: Set A of 3k elements, a bound B ∈ Z+ and, for each a ∈ A, a size s(a) ∈ Z+

such that B/4 < s(a) < B/2 and
∑

a∈A s(a) = kB.

QUESTION: canA be partitioned into k disjoint sets {A1, A2, . . . , Ak} such that
∑

a∈Ai s(a) =

B for each 1 ≤ i ≤ k?

The reduction is as follows. Given an instance of 3-Partition on a set A = {a1, . . . , a3k}

with bound B, and given a fixed value α > 1, we define an instance I of (·, ·)-VMA as follows:

D = {a1, . . . , a3k}, `(·) = s(·), and b = Bα(α−1) (i.e., x∗ = B). (For the proof of the (C, ·)-VMA

12



and (·,m)-VMA problems it is enough to set C = B and m = k when required.) We show now

that the answer to the 3-Partition problem is YES if and only if the output π = {A1, A2, . . . , Am}

of the (·, ·)-VMA problem on input I is such that
∑m

i=1 f(`(Ai)) = kf(B).

For the direct implication, assume that there exists a partition {A1, A2, . . . , Ak} of A such that

for each i ∈ [1, k],
∑

a∈Ai s(a) = B. Then, in the context of the (·, ·)-VMA problem, such partition

has cost
∑m

i=1 f(`(Ai)) = kf(B). We claim that any partition has at least cost kf(B). In order

to prove it, assume for the sake of contradiction that there is a partition π′ = {A′1, A′2, . . . , A′m} of

(·, ·)-VMA on input I with cost less than kf(B). Then, there is some i ∈ [1,m] such that A′i 6= ∅

and `(A′i) 6= B. From Lemma 3, P (π′) > ρ∗`(D) = (f(x∗)/x∗)kB. Since B = x∗, we have that

P (π′) > kf(B), which is a contradiction.

To prove the reverse implication, assume an output π = {A1, A2, . . . , Am} of the (·, ·)-VMA

problem on input I such that P (π) =
∑m

i=1 f(`(Ai)) = kf(B). Then, it must be ∀i ∈ [1,m] :

Ai 6= ∅, `(Ai) = B. Otherwise, from Lemma 3, P (π) > kf(B), a contradiction.

It is known that strongly NP-hard problems cannot have a fully polynomial-time approximation

scheme (FPTAS) [Vazirani, 2004]. Hence, the following corollary.

Corollary 2. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems do not have fully polynomial-

time approximation schemes (FPTAS), even if α is constant.

In the following sections we show that, while the (·,m)-VMA and (·, ·)-VMA problems have

polynomial-time approximation schemes (PTAS), the (C, ·)-VMA problem cannot be approxi-

mated below 3
2
· α−1+(2/3)α

α
.

3.2. The (·,m)-VMA and (·, ·)-VMA Problems Have PTAS

We have proved that the (·,m)-VMA and (·, ·)-VMA problems are NP-hard in the strong sense

and that, hence, there exists no FPTAS for them. However, Alon et al. [Alon et al., 1998], proved

that if a function f(·) satisfies a condition denoted F∗, then the problem of scheduling jobs in

m identical machines so that
∑

i f(Mi) is minimized has a PTAS, where Mi is the load of the

jobs allocated to machine i. This result implies that if our function f(·) satisfies condition F∗,

the same PTAS can be used for the (·,m)-VMA and (·, ·)-VMA problems. From Observation 6.1

in [Epstein and Sgall, 2004], it can be derived that, in fact, our power consumption function f(·)

satisfies condition F∗. Hence, the following theorem.
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Theorem 2. There are polynomial-time approximation schemes (PTAS) for the (·,m)-VMA and

(·, ·)-VMA problems.

3.3. Bounds on the Approximability of the (C, ·)-VMA Problem

We study now the (C, ·)-VMA problem, where we consider an unbounded number of machines

with bounded capacityC. We will provide a lower bound on its approximation ratio, independently

on the relation between x∗ and C; and upper bounds for the cases when x∗ ≥ C and x∗ < C.

3.3.1. Lower bound on the approximation ratio

The following theorem shows a lower bound on the approximation ratio of any offline algorithm

for (C, ·)-VMA.

Theorem 3. No algorithm achieves an approximation ratio smaller than 3
2
· α−1+( 2

3
)α

α
for the (C, ·)-

VMA problem unless P = NP.

Proof. The claim is proved showing a reduction from the partition problem [Garey and Johnson,

1979]. In the partition problem there is a set A = {a1, a2, . . . , an} of n elements, there is a size

s(a) for each element a ∈ A, and the sum M =
∑

a∈A s(a) of the sizes of the elements in A. The

problem decides whether there is a subset A′ ⊂ A such that
∑

a∈A′ s(a) = M/2.

From an instance of the partition problem, we construct an instance of the (C, ·)-VMA problem

as follows. The set of VMs in the system is D = {a1, a2, . . . , an}, the load function is `(·) = s(·),

the capacity of each PM is set to C = M/2, and b is set to b = Cα(α − 1) (i.e., x∗ = C). Let us

study the optimal partition π∗ such that the total power consumption P (π∗) is minimized. If there

is a partition of D such that each subset in this partition has load M/2 then, from Observation 1,

π∗ has all the VMs assigned to two PMs. Otherwise, π∗ needs at least 3 PMs to allocate all the

VMs. From Corollary 1, the power consumption of this solution is lower bounded by the power

of a (maybe unfeasible) partition that balances the load among the 3 PMs as evenly as possible.

Formally,

∃A′ :
∑

a∈A′ s(a) = M/2

⇒ P (π∗) = 2b+ 2
(
M
2

)α
= 2b+ 2Cα (8)

@A′ :
∑

a∈A′ s(a) = M/2

⇒ P (π∗) ≥ 3b+ 3
(
M
3

)α
= 3b+ 3

(
2C
3

)α
. (9)
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Comparing both values we obtain the following ratio.

ρ =
3b+ 3

(
2C
3

)α
2b+ 2Cα

=
3Cα(α− 1) + 3

(
2C
3

)α
2Cα(α− 1) + 2Cα

=
3

2
·
α− 1 + (2

3
)α

α
. (10)

Therefore, given any ε > 0, having a polynomial-time algorithm A with approximation ratio ρ− ε

would imply that this algorithm could be used to decide if there is a subset A′ ⊂ A such that∑
a∈A′ s(a) = M/2. In other words, this algorithm would be able to solve the partition problem.

This contradicts the fact that the partition problem is NP-hard and no polynomial time algorithm

solves it unless P = NP. Therefore, there is no algorithm that achieves a ρ− ε = 3
2
· α−1+( 2

3
)α

α
− ε

approximation ratio for the (C, ·)-VMA problem unless P = NP.

3.3.2. Upper bound on the approximation ratio for x∗ ≥ C

We study now an upper bound on the competitive ratio of the (C, ·)-VMA problem for the case

when x∗ ≥ C. Under this condition, the best is to load each PM to its full capacity. Intuitively, an

optimal solution should load every machine up to its maximum capacity or, if not possible, should

balance the load among PMs to maximize the average load. The following lemma formalizes this

observation.

Lemma 4. For any system with unbounded number of PMs where x∗ ≥ C the power consumption

of the optimal assignment π∗ is lower bounded by the power consumption of a (possibly not fea-

sible) solution where `(D) is evenly distributed among m PMs, where m is the minimum number

of PMs required to allocate all VMs (i.e., the optimal solution of the packing problem). That is,

P (π∗) ≥ m · b+m(`(D)/m)α.

Proof. Denote the number of PMs used in an optimal (C, ·)-VMA solution π∗ by m∗. By Corol-

lary 1, we know that P (π∗) ≥ m∗b + m∗(`(D)/m∗)α. Given that m ≤ m∗, we know that

`(D)/m∗ ≤ `(D)/m ≤ C ≤ x∗. Thus, for evenly-balanced loads the power consumption is

reduced if the number of PMs is reduced, that is m∗b + m∗(`(D)/m∗)α ≥ m · b + m(`(D)/m)α.

Hence, the claim follows.

Now we prove an upper bound on the approximation ratio showing a reduction to bin pack-

ing [Garey and Johnson, 1979]. The reduction works as follows. Let each PM be seen as a bin of
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capacity C, and each VM be seen as an object to be placed in the bins, whose size is the VM load.

Then, a solution for this bin packing problem instance yields a feasible (perhaps suboptimal) so-

lution for the instance of (C, ·)-VMA. Moreover, using any bin-packing approximation algorithm,

we obtain a feasible solution for (C, ·)-VMA that approximates the minimal number of PMs used.

The power consumption of this solution approximates the power consumption of the optimal solu-

tion π∗ of the instance of (C, ·)-VMA. In order to compute an upper bound on the approximation

ratio of this algorithm, we will compare the power consumption of such solution against a lower

bound on the power consumption of π∗. The following theorem shows the approximation ratio

obtained.

Theorem 4. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA problem

when x∗ ≥ C that achieves an approximation ratio of

ρ < 1 + ε+
Cα

b
+

1

m
, (11)

where m is the minimum number of PMs required to allocate all the VMs.

Proof. Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ C, the optimal solution is to

place all the VMs in one single PM. Hence, we assume in the rest of the proof that `(D) > C.

Define the corresponding instance of bin packing following the reduction described above. Let

the optimal number of bins to accommodate all VMs be m. As shown in [Fernandez de la Vega

and Lueker, 1981], for every ε > 0, there is a polynomial-time algorithm that fits all VMs in m̂

bins, where m̂ ≤ (1 + ε)m + 1. From Lemma 2, once the number of PMs used m̂ is fixed, the

power consumption is maximized when the load is unbalanced to the maximum. I.e., the power

consumption of the assignment is at most m̂b + (`(D)/C)Cα. On the other hand, as shown in

Lemma 4, the power consumption of the optimal (C, ·)-VMA solution is at leastm ·b+m
(
`(D)
m

)α
.

Then, we compute a bound on the approximation ratio as follows.

ρ ≤
m̂b+

(
`(D)
C

)
Cα

m · b+m
(
`(D)
m

)α < m̂b+
(
`(D)
C

)
Cα

m · b+m
(
C
2

)α , (12)

where the second inequality comes from `(D)/m > C/2. (If `(D)/m ≤ C/2, there must be two

PMs whose loads add up to less than C, which contradicts the fact that m is the number of bins
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used in the optimal solution of bin packing.) Let γ = (x∗/C)α. Then, replacing b = γCα(α − 1),

in Eq. (12) we have

ρ <
m̂γCα(α− 1) +

(
`(D)
C

)
Cα

mγCα(α− 1) +m
(
C
2

)α
=

m̂γ(α− 1) +
(
`(D)
C

)
mγ(α− 1) +m

(
1
2

)α ≤ m̂γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (13)

≤ (m(1 + ε) + 1))γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (14)

=
(1 + ε)γ(α− 1) + 1

γ(α− 1) +
(

1
2α

) +
γ(α− 1)

mγ(α− 1) +
(
m
2α

)
=

2α((1 + ε)γ(α− 1) + 1)

2αγ(α− 1) + 1
+

2αγ(α− 1)

m(2αγ(α− 1) + 1)

<
(1 + ε)γ(α− 1) + 1

γ(α− 1)
+

1

m

= 1 + ε+
1

γ(α− 1)
+

1

m
= 1 + ε+

Cα

b
+

1

m
(15)

Inequality (13) follows from `(D)/C ≤ m, Inequality (14) from the approximation algorithm for

bin packing, and the last inequality is because m > 0.

3.3.3. Upper bound on the approximation ratio for x∗ < C

We study now the (C, ·)-VMA problem when x∗ < C. In this case, the optimal load per PM

is less than its capacity, so an optimal solution would load every PM to x∗ if possible, or try to

balance the load close to x∗. In this case we slightly modify the bin packing algorithm described

above, reducing the bin size from C to x∗. Then, using an approximation algorithm for this bin

packing problem, the following theorem can be shown.

Theorem 5. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA problem

when x∗ < C that achieves an approximation ratio of

ρ <
m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
, (16)

where m∗ is the number of PMs used by the optimal solution of (C, ·)-VMA, and m is the mini-

mum number of PMs required to allocate all the VMs without exceeding load x∗ (i.e., the optimal

solution of the bin packing problem).
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Proof. Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ x∗ then the optimal solution

is to assign all the VMs to one single PM. Then, in the rest of the proof we assume that `(D) > x∗.

Assuming m∗ to be the number of PMs of an optimal (C, ·)-VMA solution π∗ for load `(D),

from Corollary 1, we can claim that the power consumption P (π∗) can be bounded as P (π∗) ≥

m∗b+m∗(`(D)/m∗)α.

Now, let m be the minimum number of PMs required to allocate all the VMs of the (C, ·)-

VMA problem without exceeding load x∗. As shown in [Fernandez de la Vega and Lueker, 1981],

for every ε > 0, there is a polynomial-time algorithm that fits all VMs in m̂ bins, where m̂ ≤

(1 + ε)m + 1. From Lemma 2, this approximation results in a power consumption no larger than

m̂b+(`(D)/x∗)(x∗)α. Hence, the approximation ratio ρ of the solution obtained wit this algorithm

can be bounded as follows.

ρ ≤
m̂b+

(
`(D)
x∗

)
(x∗)α

m∗b+m∗
(
`(D)
m∗

)α . (17)

Since `(D) > x∗, we know that `(D)/m∗ > x∗/2, since otherwise there are two used PMs whose

load is no larger than x∗, contradicting by Lemma 1 the definition of m∗. Also, from the definition

of m, it follows that `(D) ≤ m · x∗. Finally, recall that b = (x∗)α(α − 1). Applying these results

to Eq. (17) we have the following.

ρ <
m̂(x∗)α(α− 1) +

(
x∗m
x∗

)
(x∗)α

m∗(x∗)α(α− 1) +m∗
(
x∗

2

)α
=

m̂(α− 1) +m

m∗(α− 1) +m∗
(
1
2

)α ≤ (m(1 + ε) + 1)(α− 1) +m

m∗(α− 1) + m∗

2α

=
m(1 + ε)(α− 1) +m

m∗(α− 1) + m∗

2α

+
α− 1

m∗(α− 1) + m
2α

=
m

m∗
2α((1 + ε)(α− 1) + 1)

2α(α− 1) + 1
+

2α(α− 1)

2αm∗(α− 1) +m∗

≤ m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
, (18)

where the first inequality comes from applying the results aforementioned, and second one from

using m̂ = m(1 + ε) + 1, while the last one results from simplifying the previous equation.
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4. Online Analysis

In this section, we study the online version of the VMA problem, i.e., when the VMs are

revealed one by one. We first study lower bounds and then provide online algorithms and prove

upper bounds on their competitive ratio.

4.1. Lower Bounds

In this section, we compute lower bounds on the competitive ratio for (·, ·)-VMA, (C, ·)-VMA,

(·,m)-VMA, (C,m)-VMA and (·, 2)-VMA problems. We start with one general construction that

is used to obtain lower bounds on the first four cases. Then, we develop special constructions for

(·,m)-VMA and (·, 2)-VMA that improve the lower bounds for these two problems.

4.1.1. General Construction

We prove lower bounds on the competitive ratio of (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA and

(C,m)-VMA problems. These lower bounds are shown in the following two theorems. In The-

orem 6, we prove a lower bound on the competitive ratio that is valid in the cases when C is

unbounded and when it is larger or equal than x∗. The case C ≤ x∗ is covered in Theorem 7.

Theorem 6. There exists an instance of problems (·, ·)-VMA, (·,m)-VMA, (C, ·)-VMA and (C,m)-

VMA when C > x∗, such that no online algorithm can guarantee a competitive ratio smaller than
(3/2)2α−1

2α−1 .

Proof. We consider a scenario where, for any online algorithm, an adversary injects VMs of size

εx∗ (ε > 0 is an arbitrarily small constant) to the system until the algorithm starts up a new PM.

Let us assume that the total number of VMs injected is k. According to the adversary’s behavior,

the assignment of the VMs should be that all the VMs except one are allocated to a single PM

while the second PM has only one VM. Depending on what the optimal solution is, we discuss the

following two cases:

Case 1: k ≤ 1
ε

(
α−1

1−21−α
)1/α. The optimal solution will allocate all the VMs to a single PM.

Consequently, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

(kεx∗)α + b

)
. (19)
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It can be easily verified that function ρ(k) is monotone decreasing with k. That is, ρ(k) is mini-

mized when k = 1
ε

(
α−1

1−21−α
)1/α. As a result, we obtain,

ρ(k) ≥ lim
ε→0


((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b((
α−1

1−21−α
)1/α

x∗
)α

+ b


=

((
α−1

1−21−α
)1/α

x∗
)α

+ 2(x∗)α(α− 1)((
α−1

1−21−α
)1/α

x∗
)α

+ (x∗)α(α− 1)

=
3− 21−α

2− 21−α =
(3/2)2α − 1

2α − 1
. (20)

Case 2: k > 1
ε

(
α−1

1−21−α
)1/α. The optimal solution will use two PMs with k/2 PMs assigned to each

PM. Accordingly, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

2
(
kεx∗

2

)α
+ 2b

)
. (21)

Similarly, we observe that ρ(k) is monotone increasing with k. Consequently, the following in-

equality applies.

ρ(k) ≥ lim
ε→0


((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b

2
(

1
2

(
α−1

1−21−α
)1/α

x∗
)α

+ 2b


=

((
α−1

1−21−α
)1/α

x∗
)α

+ 2(x∗)α(α− 1)

2
(

1
2

(
α−1

1−21−α
)1/α

x∗
)α

+ 2(x∗)α(α− 1)

=
3− 21−α

2− 21−α =
(3/2)2α − 1

2α − 1
(22)

Note that it can also happen that C <
(

α−1
1−21−α

)1/α
x∗. In this case, k is smaller than 1

ε

(
α−1

1−21−α
)1/α.

Therefore, the competitive ratio is always larger than (3/2)2α−1
2α−1 , proving the lower bound.

Theorem 7. There exists an instance of problems (C, ·)-VMA and (C,m)-VMA when C ≤ x∗

such that no online algorithm can guarantee a competitive ratio smaller than (Cα + 2b)/(b +

max(Cα, 2(C/2)α + b)).

Proof. Similarly to the proof of Theorem 6, we prove the result by considering an adversarial

injection of VMs of size εC. This injection stops when a new PM started up by an online algorithm.
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We discuss the following two cases:

Case 1: k ≤ 1/ε. In this case, the optimal algorithm will assign all the VMs to a single PM. The

competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

((k − 1)εC)α + (εC)α + 2b

(kεC)α + b

≥ lim
ε→0

(1− ε)αCα + 2b

Cα + b

≥ Cα + 2b

Cα + b
≥ 2− 1

α
(23)

The second inequality results from applying k ≤ 1/ε, which is observed from the monotone

decreasing property of function ρ(k). The last inequality comes from computing the limit when ε

goes to 0 and by applying b ≥ Cα(α− 1).

Case 2: k > 1/ε. In this case, the adversary stops injecting VMs as there will be, mandatorily,

two active PMs, one of them not capable to allocate more VMs and the second one hosting one

single VM. Since all the VMs can not be consolidated to a single PM. The optimal solution would

use also two PMs but evenly balancing the loads among them. The competitive ratio of the online

algorithm satisfies

ρ(k) = lim
ε→0

(
((k − 1)εC)α + (εC)α + 2b

2
(
kεC
2

)α
+ 2b

)

= lim
ε→0

(
Cα + (εC)α + 2b

2
(
C+εC

2

)α
+ 2b

)
=

Cα + 2b

2
(
C
2

)α
+ 2b

. (24)

Hence, combining the results from both cases 1 and 2 we obtain the bound presented in Theorem

7.

4.1.2. Special Constructions for (·,m)-VMA and (·, 2)-VMA

We show first that for m PMs there is a lower bound on the competitive ratio that improves the

previous lower bound when α > 4.5. Secondly, we prove a particular lower bound for problem

(·, 2)-VMA, that improves the previous lower bound when α > 3.

Theorem 8. There exists an instance of problem (·,m)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/(2α+2 + ε) for any ε > 0.
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Proof. We prove the result by giving an adversarial arrival of VMs. We evaluate the competitive

ratio of any online algorithm ALG with respect to an algorithm OPT that distributes the VMs

among all the PMs “as evenly as possible”. We define a value β > 1 such that ε ≥ (α − 1)/βα

for some value ε > 0. Note that such value β can be defined for any ε > 0. The adversarial arrival

follows. In a first phase, m VMs arrive, each with load βx∗.

Let π be the partition given by ALG. We show first that if π uses less than 3m/4 PMs5 or some

PM is assigned more than 2 VMs there exists another partition that can be obtained from π, it uses

exactly 3m/4 PMs, no PM is assigned more than 2 VMs, and the power consumption is not worse.

If π uses less than 3m/4 PMs, then there exists another partition π′ that uses exactly 3m/4 PMs

with a power consumption that is not worse than P (π). To see why, notice that there are PMs in

π that are assigned more than one VM and that each load is βx∗ > x∗. Then, applying repeatedly

Lemma 1 until 3m/4 PMs are used, where `1 and `2 are the loads of any pair of VMs assigned to

the same PM, a partition π′ such that P (π′) ≤ P (π) can be obtained.

If in π′ some PM is assigned more than 2 VMs, then there exists another partition π′′ where

no PM is assigned more than 2 VMs with a power consumption that is not worse than P (π′). To

see why, consider the following reassignment procedure. Repeatedly until there is no such PM,

locate a PM si with at least 3 VMs. Then, locate a PM sj with one single VM (which exists by

the pigeonhole principle). Then, move one VM from si to sj . From Lemma 2 each movement

decreases the power consumed. Hence, π′′ is still a partition that uses 3m/4 PMs, each PM has at

most 2 VMs assigned, and P (π′′) ≤ P (π′).

Then, we know that P (π) is not smaller than the power consumption of a partition where

exactly 3m/4 PMs are used and no PM is assigned more than 2 VMs. On the other hand, OPT

would have assigned each VM to a different PM. Thus, using that x∗ = (b/(α − 1))1/α, the

competitive ratio is

ρ ≥ (2βx∗)αm/4 + (βx∗)αm/2 + 3mb/4

m(βx∗)α +mb

≥ (2α−2 + 1/2)βα

βα + (α− 1)
≥ 2α−3 + 1/4, (25)

5For clarity we omit floors and ceilings in the proof.
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where the last inequality follows from βα ≥ (α−1). Finally, observe that 2α−3+1/4 ≥ 3α/(2α+2+

ε) for α > 1. No more VMs arrive in this case.

Let us consider now the the case where ALG assigns the m initial VMs to more than 3m/4

PMs. Then, after ALG has assigned the first m VMs, a second batch of m/2 VMs arrive, each VM

with load 2βx∗. Let π be the partition output by ALG after this second batch is assigned. If in π

two of the second batch VMs are assigned to the same PM si, by the pigeonhole principle there is

at least one PM sj with at most load βx∗. Then, from Lemma 2, the power consumed is reduced if

one of the new VMs is moved from si to sj . After repeating this process as many times as possible,

a partition π′ is obtained where each of the VMs of the second batch is assigned to a different PM,

and P (π′) ≤ P (π). Since ALG used more than 3m/4 PMs in the first batch, in π′, there are at

least m/4 PMs with load 3βx∗. On the other hand, OPT can distribute all the VMs in such a way

that each PM has a load of 2βx∗. Thus, the bound on the competitive ratio is as follows.

ρ ≥ m(3βx∗)α/4

m(2βx∗)α +mb
≥ 3α

2α+2 + ε
, (26)

where the last inequality follows from ε ≥ (α− 1)/βα.

Now, we show a stronger lower bound on the competitive ratio for (·, 2)-VMA problem.

Theorem 9. There exists an instance of problem (·, 2)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/2α+1.

Proof. We prove the result by showing an adversarial arrival of VM. We evaluate the competitive

ratio of any online algorithm ALG with respect to an optimal algorithm OPT that knows the future

VM arrivals. The adversarial arrival follows. In a first phase two VM d1 and d2 arrive, with loads

`(d1) = `(d2) = 6x∗ (Recall from Section 2 that x∗ = (b/(α− 1))1/α).

If ALG assigns both VMs to the same PM, the power consumed will be (12x∗)α + b, whereas

OPT would assign them to different PMs, with a power consumption of 2((6x∗)α + b). Hence, the

ratio ρ would be

ρ =
(12x∗)α + b

2((6x∗)α + b)
>

12α

2(6α + α− 1)

>
12α

2(6α + 2α)
=

6α

2(3α + 1)
, (27)
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where the first inequality follows from α > 1 and the second from α− 1 < 2α for any α > 1. It is

enough to prove that 6α/(2(3α + 1)) ≥ (3/2)α /2, or equivalently 4α ≥ 3α + 1, which is true for

any α > 1. Then, there are no new VM arrivals.

If, otherwise, ALG assigns each VM d1 and d2 to a different PM, then a third VM d3 arrives,

with load `(d3) = 12x∗. Then, ALG must assign it to one of the PMs. Independently of which PM

is used, the power consumption of the final configuration is (18x∗)α + (6x∗)α + 2b. On its side,

OPT assigns d1 and d2 to one PM, and d3 to the other, with a power consumption of 2((12x∗)α+b).

Hence, the competitive ratio ρ is

ρ =
(18x∗)α + (6x∗)α + 2b

2((12x∗)α + b)
>

18α + 6α

2(12α + α− 1)

>
18α + 6α

2(12α + 4α)
≥ (3/2)α /2, (28)

where the first inequality follows from α > 1, the second from α− 1 < 4α for any α > 1, and the

third from (9α + 3α)/(6α + 2α) ≥ (3/2)α, what can be checked to be true. Then, there are no new

VM arrivals and the claim follows.

4.2. Upper Bounds

Now, we study upper bounds for (·, ·)-VMA, (C, ·)-VMA, and (·, 2)-VMA problems. We start

giving an online VMA algorithm that can be used in (·, ·)-VMA and (C, ·)-VMA problems. The

algorithm uses the load of the new revealed VM in order to decide the PM where it will be assigned.

If the load of the revealed VM is strictly larger than min{x∗, C}/2, the algorithm assigns this VM

to a new PM without any other VM already assigned to it. Otherwise, the algorithm schedules

the revealed VM to any loaded PM whose current load is smaller or equal than min{x∗,C}
2

. Hence,

when this new VM is assigned, the load of this PM remains smaller than min{x∗, C}. If there is

no such loaded PM, the revealed VM is assigned to a new PM. Note that, since the case under

consideration assumes the existence of an unbounded number of PMs, there exists always one new

PM. A detailed description of this algorithm is shown in Algorithm 1. As before, Aj denotes the

set of VMs assigned to PM sj at a given time.

We prove the approximation ratio of Algorithm 1 in the following two theorems.

Theorem 10. There exists an online algorithm for (·, ·)-VMA and (C, ·)-VMA when x∗ < C that
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Algorithm 1: Online algorithm for (·, ·)-VMA and (C, ·)-VMA problems.

for each VM di do

if `(di) > min{x∗,C}
2

then
di is assigned to a new PM

else
di is assigned to any loaded PM sj where `(Aj) ≤ min{x∗,C}

2
. If such loaded PM does

not exist, di is assigned to a new PM

achieves the following competitive ratio:

ρ = 1, if no VM di has load such that `(di) < x∗, (29)

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

)
, otherwise. (30)

Proof. We proceed with the analysis of the competitive ratio of Algorithm 1 shown above. Let

us first consider an optimal algorithm, that is, an algorithm that gives an optimal solution for any

instance. Let us denote by π∗ the optimal solution obtained by the optimal algorithm, and Ai the

load assigned to PM si in that solution, for a particular instance of VMA problem. Furthermore,

load Ai is decomposed in di1 , di2 , . . . , diki , where each dij is a VM that π∗ assigns to si. Using

simple algebra, it holds:

f(`(Ai)) =
f(`(Ai))

`(Ai)
(`(di1) + `(di2) + · · ·+ `(diki )). (31)

It is possible now to split the set Ai in two sets, one with those VMs assigned to si whose load

is strictly smaller than x∗ and a second set that contains those VMs assigned to si whose load is

bigger than x∗. In terms of notation, we say that Ai is split in Bi and Si (where B stands for Big

loads and S stands for Small loads). Therefore, it also holds:

f(`(Ai)) =
∑
dij∈Bi

f(`(Ai))

`(Ai)
`(dij) +

∑
dij∈Si

f(`(Ai))

`(Ai)
`(dij). (32)

On the other hand, by definition of x∗, it holds that: f(`(Ai))/`(Ai) ≥ f(x∗)/x∗ for all i

(indeed, for any load). Moreover, if a PM has been assigned with a load `(dij) bigger than x∗, it

also holds that f(`(Ai))/`(Ai) ≥ f(`(dij))/`(dij). Hence, we obtain the following inequality:

f(`(Ai)) ≥
∑
dij∈Bi

f(`(dij)) +
∑
dij∈Si

f(x∗)

x∗
`(dij). (33)
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In order to lower bound the power consumption of the solution π∗, we plug the above inequality

into the corresponding equation:

P (π∗) =
∑
Ai 6=∅

f(`(Ai))

≥
∑
Ai 6=∅

∑
dij∈Bi

f(`(dij)) +
f(x∗)

x∗

∑
Ai 6=∅

∑
dij∈Si

`(dij), (34)

or, equivalently expressed in more compact notation:

P (π∗) ≥
∑

di:`(di)≥x∗
f(`(di)) +

f(x∗)

x∗

∑
di:`(di)<x∗

`(di). (35)

Consider now Algorithm 1. Let us denote by π a solution that Algorithm 1 gives for a particular

instance. Also, let us denote by Âi the load assigned by Algorithm 1 to PM si. Note that due to the

design of the algorithm, after the last VM has been assigned, either there is only one loaded PM

whose current load is smaller than x∗/2, or every loaded PM has a load at least x∗/2. We study

these two cases separately.

Case 1: `(Âi) ≥ x∗/2 for all i. In this case, in a solution provided by π there are PMs with two

types of load: those that are loaded with one VM whose load is no smaller than x∗, and those that

are loaded with VMs whose load is strictly smaller than x∗, nonetheless, their total load is bigger

than x∗/2. Note that due to the design of the algorithm, none of the PMs in the second group has

a load bigger than x∗. Let us denote by B the set of VMs with load at least x∗, and Ds the set of

VMs with load less than x∗. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2
)

x∗

2

`(Ds). (36)

Computing the ratio ρ between P (π) and P (π∗), we obtain the following inequality:

ρ ≤

∑
d∈B f(`(d)) +

f(x
∗
2
)

x∗
2

`(Ds)∑
d∈B f(`(d)) + f(x∗)

x∗
`(Ds)

≤
f(x
∗
2
)

x∗
2

`(Ds)

f(x∗)
x∗

`(Ds)

= 2
f(x

∗

2
)

f(x∗)
= 2

(
1− 1

α

(
1− 1

2α

))
. (37)
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Case 2: there exists si such that `(Âi) < x∗/2. In this case, π gives solutions with three types of

loaded PMs: those that are loaded with one VM whose load is bigger than x∗, those that are loaded

with VMs whose load is strictly smaller than x∗, but which total load is at least x∗/2, and one PM

whose total load is is strictly smaller than x∗/2. Let us denote such a PM by s′. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi)) + f(`(Âs′))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2
)

x∗

2

(
`(Ds)− `(Âs′)

)
+ f(`(Âs′))

=
∑
d∈B

f(`(d)) +
f(x

∗

2
)

x∗

2

(
`(Ds)− `(Âs′)

)
+ `(Âs′)

α + b. (38)

Let us denote the latter expression by Π(π). Computing the ratio ρ between P (π) and P (π∗), we

obtain the following inequality:

ρ ≤ Π(π)∑
d∈B f(`(d)) + f(x∗)

x∗
`(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α − `(Âs′)
f(x
∗
2
)

x∗
2

+ b

f(x∗)
x∗

`(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α + b
f(x∗)
x∗

`(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+

(x
∗

2
)α + b

f(x∗)
x∗

`(Ds)

=

(
1− 1

α

(
1− 1

2α

))(
2 +

x∗

`(Ds)

)
. (39)

Since x∗/`(Ds) is always positive, the competitive ratio of Algorithm 1 is equal to 2α−1+x∗/`(Ds).

Observe that, when no VM d has load `(d) < x∗, i,e., S = ∅, P (π) and P (π∗) are equal. Hence,

the competitive ratio is 1.

Theorem 11. There exists an online algorithm for (C, ·)-VMA when x∗ ≥ C that achieves compe-

titive ratio ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)
.

Proof. We proceed with the analysis of the competitive ratio of Algorithm 1 in the case when

x∗ ≥ C. The analysis uses the same technique used in the proof for the previous theorem. Hence,

we just show the difference.
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On the one hand, when x∗ ≥ C, it holds that f(`(Ai))/`(Ai) ≥ f(C)/C due to the fact that

f(x)/x is monotone decreasing in interval (0, C]. It is also obvious that all the PMs will be loaded

no more C. As a result, the optimal power consumption for (C, ·)-VMA can be bounded by

P (π∗) ≥ f(C)

C
`(D). (40)

On the other hand, the solution given by Algorithm 1 can also be upper bounded. We consider

the following two cases.

Case 1: `(Âi) ≥ C/2 for all i. In this case, every PM will be loaded between C/2 and C.

Consequently,

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) ≤
f(C

2
)

C
2

`(D). (41)

The competitive ratio ρ then satisfies

ρ ≤
f(C

2
)

C
2

`(D)

f(C)
C
`(D)

= 2
f(C

2
)

f(C)
≤ 2b

C

(
1 +

1

(α− 1)2α

)
. (42)

Case 2: there exists si such that `(Âi) < C/2. In this case, it holds:

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) + f(`(Âs′))

≤
f(C

2
)

C
2

( ∑
di:`(di)≤C

`(di)− `(Âs′)
)

+ f(`(Âs′))

=
f(C

2
)

C
2

(
`(D)− `(Âs′)

)
+ `(Âs′)

α + b. (43)

The competitive ratio ρ then satisfies

ρ ≤ P (π)
f(C)
C
`(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

+
`(Âs′)

α − `(Âs′)
f(C

2
)

C
2

+ b

f(C)
C
`(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+
`(Âs′)

α + b
f(C)
C
`(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

(C
2

)α + b
f(C)
C
`(D)

=
2b

C

(
1 +

1

(α− 1)2α

)(
2 +

C

`(D)

)
. (44)
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4.2.1. Upper Bounds for (·, 2)-VMA problem

We now present an algorithm (detailed in Algorithm 2) for (·, 2)-VMA problem and show an

upper bound on its competitive ratio. A1 and A2 are the sets of VMs assigned to PMs s1 and s2,

respectively, at any given time.

Algorithm 2: Online algorithm for (·, 2)-VMA.

for each VM di do

if `(di) + `(A1) ≤ (b/(2α − 2))1/α or `(A1) ≤ `(A2) then

di is assigned to s1;

else

di is assigned to s2;

We prove the approximation ratio of Algorithm 2 in the following theorem.

Theorem 12. There exists an online algorithm for (·, 2)-VMA that achieves the following compe-

titive ratios.

ρ = 1, for `(D) ≤
(

b
2α−2

)1/α
, (45)

ρ ≤ max

{
2,

(
3

2

)α−1}
, for `(D) >

(
b

2α−2

)1/α. (46)

Proof. Consider Algorithm 2 shown above. If `(D) ≤ (b/(2α − 2))1/α, then the competitive ratio

is 1 as we show. Algorithm 2 assigns all the VMs to PM s1. On the other hand, the optimal offline

algorithm also assigns all the VMs to one PM. To prove it, it is enough to show that `(D)α + b <

`(A1)
α + `(A2)

α + 2b. Using that `(A1)
α + `(A2)

α > 2 (`(D)/2)α and manipulating, it is enough

to prove `(D) < 2 (b/(2α − 2))1/α. This is true for `(D) ≤ (b/(2α − 2))1/α.

We consider now the case (b/(2α − 2))1/α < `(D) < 2 (b/(2α − 2))1/α. Within this range, for

the optimal algorithm is still better to assign all VMs to one PM, as shown. Then, the competitive

ratio ρ is

ρ =
`(A1)

α + `(A2)
α + 2b

`(D)α + b
≤ `(D)α + 2b

`(D)α + b
< 2. (47)
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Consider any given step after `(D) ≥ 2 (b/(2α − 2))1/α. Within this range, the optimal al-

gorithm may assign the VMs to one or both PMs. If the optimal algorithm assigns to one PM,

Inequality 47 applies. Otherwise, the competitive ratio ρ is

ρ =
`(A1)

α + `(A2)
α + 2b

2(`(D)/2)α + 2b
≤ 2α−1

`(A1)
α + `(A2)

α

`(D)α

= 2α−1
`(A1)

α/`(A2)
α + 1

(`(A1)/`(A2) + 1)α
. (48)

Then, in order to obtain a ratio at most xα/2, where x will be set later, it is enough to guarantee

2α−1
`(A1)

α/`(A2)
α + 1

(`(A1)/`(A2) + 1)α
≤ xα

2

(`(A1)/`(A2))
α + 1

(`(A1)/`(A2) + 1)α
≤
(
x
2

)α
. (49)

Without loss of generality, assume `(A1) ≤ `(A2). This implies that (`(A1)/`(A2))
α ≤ `(A1)/`(A2).

Then, it is enough to have

`(A1)/`(A2) + 1

(`(A1)/`(A2) + 1)α
≤
(
x
2

)α
. (50)

Let us now define `(A1) + ` = `(A2) for some ` ≥ 0. Manipulating and replacing, it is enough to

show

`

`(A1)
≤ 2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
. (51)

If Inequality 51 holds the theorem is proved. Otherwise, the following claim is needed.

Claim 1. If `(D) ≥ 2 (b/(2α − 2))1/α, then there must exist a VM di in D such that `(di) ≥

|`(A2)− `(A1)|.

Proof. If `(A2) = `(A1) the claim follows trivially. Assume that `(A2) 6= `(A1). Consider any

given time when `(D) ≥ 2 (b/(2α − 2))1/α. For the sake of contradiction, assume that for all

di ∈ D it is `(di) < |`(A2) − `(A1)|. Let d1, d2, . . . , dr be the order in which the VMs were

revealed to Algorithm 2. And let the respective sets of VMs be called Di = {dj|j ∈ [1, i]}, that

is Dr = D. Given that `(D) ≥ 2 (b/(2α − 2))1/α > (b/(2α − 2))1/α, the VM dr was assigned to

the PM with smaller load. Then, either `(dr) ≥ |`(A2) − `(A1)| which would be a contradiction,

or if `(dr) < |`(A2) − `(A1)| the PM with the smaller load before and after assigning dr is the
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same. The argument can be repeated iteratively backwards for each dr−1, dr−2, etc. until, for

some j ∈ [1, r), either it is `(dj) ≥ |`(A2) − `(A1)| reaching a contradiction, or the total load

is `(Dj) < (b/(2α − 2))1/α. If the latter is the case, we know that for i ∈ [1, j] every di was

assigned to s1. Recall that for i ∈ (j, r] each di was assigned to the same PM. And, given that

dj+1 is the first VM for which the total load is at least (b/(2α − 2))1/α, that PM is s2. But then,

we have `(A2) < `(A1) < (b/(2α − 2))1/α, which is a contradiction with the assumption that

`(D) ≥ 2 (b/(2α − 2))1/α.

Using Claim 1 we know that there exists a di in the input such that

`(di) ≥ ` > `(A1)
2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
. (52)

From the latter, it can be seen that if x ≥ 2(3/4)
α−1
α , then we have that ` > 2`(A1). Then, the

competitive ratio ρ is

ρ =
`(A1)

α + (`(A1) + `)α + 2b

(2`(A1))α + `α + 2b

≤ `(A1)
α + (`(A1) + `)α

(2`(A1))α + `α
. (53)

Using calculus, this ratio is maximized for ` = 2`(A1) for ` ≥ 2`(A1). Then, we have ρ ≤

(1 + 3α)/(2 · 2α). Then, in order to obtain a ratio at most xα/2, it is enough to guarantee (1 +

3α)/(2 · 2α) ≤ xα/2 which yields x ≥ ((1 + 3α)/2α)1/α.

Given that, for any α ≥ 1, it holds:

2(3/4)1−1/α ≥ ((1 + 3α)/2α)1/α . (54)

Then, the competitive ratio is ρ ≤ (2(3/4)1−1/α)α/2 = (3/2)α−1.

5. Discussion

We discuss in this section practical issues that must be addressed to apply our results to pro-

duction environments.

Heterogeneity of Servers. For the sake of simplicity, we assume in our model that all servers

in a data center are identical. We believe this is reasonable, considering that modern data centers

are usually built with homogeneous commodity hardware. Nevertheless, the proposed model and
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derived results are also amenable to heterogeneous data center environments. In a heterogeneous

data center, servers can be categorized into several groups with identical servers in each group.

Then, different types of applications can be assigned to server groups according to their resource

requirements. The VMA model presented here can be applied to the assignment problem of al-

locating tasks from the designated types of applications (especially CPU-intensive ones) to each

group of servers. The approximation results we derive in this paper can be then combined with

server-group assignment approximation bounds (out of the scope of this paper) for energy-efficient

task assignment in real data centers, regardless of the homogeneity of servers.

Consolidation. Traditionally, consolidation has been understood as a bin packing problem [Mishra

and Sahoo, 2011; Wang et al., 2011], where VMs are assigned to PMs attempting to minimize the

number of active PMs. However, the results we derived in this paper, as well as the results in [Ar-

jona Aroca et al., 2014a], show that such approach is not energy-efficient. Indeed, we showed that

PM’s should be loaded up to x∗ to reduce energy consumption, even if this requires having more

active PMs.

VM arrival and departure. When a new VM arrives to the system, or an assigned VM departs,

adjustments to the assignment may improve energy efficiency. Given that the cost of VM migration

is nowadays decreasing dramatically, our offline positive results can also be accommodated by

reassigning VMs whenever the set of VM demands changes. Should the cost of migration be high

to reassign after each VM arrival or departure, time could be divided in epochs buffering newly

arrived VM demands until the beginning of the next epoch, when all (new and old) VMs would be

reassigned (if necessary) running our offline approximation algorithm.

Multi-resource scheduling. This work focuses on CPU-intensive jobs (VMs) such as MapReduce-

like tasks [Dean and Ghemawat, 2008] which are representative in production datacenters. As the

CPU is generally the dominant energy consumer in a server, assigning VMs according to CPU

workloads entails energy efficiency. However, there exist types of jobs demanding heavily other

computational resources, such as memory and/or storage. Although these resources have limited

impact on a server’s energy consumption, VMs performance may be degraded if they become the

bottleneck resource in the system. In this case, a joint optimization of multiple resources (out of

the scope of this paper) is necessary for VMA.
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Implementation on real systems. In [Jansen and Brenner, 2011; Mills et al., 2011b], the au-

thors test multiple allocation algorithms which are already available in popular cloud platforms like

OpenNebula [OpenNebula, 2013] or Eucalyptus [Eucalyptus, 2013]. Some examples of these allo-

cation algorithms are Round Robin, First Fit, Least Full First or Next Fit among others. Including

another allocation policy, such as our algorithms, in the cloud controllers of these and other plat-

forms (e.g. Apache Mesos [Apache, 2014]) is feasible. Introducing our algorithms would make

those platforms power efficient, providing power-aware allocation policies. This feature is not

found on any of the algorithms mentioned in [Mills et al., 2011b] and only observed in the Watts

per Core algorithm in [Jansen and Brenner, 2011]. We leave such integration for future work.

6. Conclusions

In this paper, we have studied a particular case of the generalized assignment problem with

applications to Cloud Computing. We have considered the problem of assigning virtual machines

(VMs) to physical machines (PMs) so that the power consumption is minimized, a problem that

we call virtual machine assignment (VMA). In our theoretical analysis, we have shown that the

decision version of (C,m)-VMA problem is strongly NP-complete. We have shown as well that

the (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard. Hence, there is no

FPTAS for these optimization problems. We have shown the existence of a PTAS that solves the

(·, ·)-VMA and (·,m)-VMA offline problems. On the other hand, we have proved lower bounds on

the approximation ratio of the (C, ·)-VMA and (C,m)-VMA problems. With respect to the online

version of these problems, we have proved upper and lower bounds on the competitive ratio of the

(·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-VMA problems.

Our future work will consider the possibility that the load incurred by a VM changes over time

or that the assignment of VMs to PMs is not final (and VMs can migrate, maybe at a cost). In fact, if

the migration of VMs is available for free, our offline positive results can also be used in these new

models, since an offline approximation algorithm can be run each time a load changes or a new VM

arrives. Then, the VMs can be redistributed accordingly. Another future extension of the model

will consider that the power consumption of a feasible solution of the VMA problem depends on

several parameters simultaneously (e.g., memory space or communication bandwidth, in addition

to processing load). Finally, as stated in Section 5, we plan to deploy our algorithm in a cloud
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platform, probably OpenNebula, and compare the performance of our proposed algorithms against

other state-of-the-art allocation algorithms such as the ones analyzed in [Jansen and Brenner, 2011;

Mills et al., 2011b].
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