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Abstract—Sleep modes are one of the most widely investigated
techniques to decrease energy consumption in cellular access
networks. However, the application of such algorithms on the
base station (BS) equipment of today presents several challenges.
Indeed, currently installed BSs are unfit for frequent on/off cycles.
This may lead to increased failure rates and malfunctioning,
ultimately resulting in significant CAPEX and OPEX increases
for mobile network operators (MNOs). This situation calls for
a new generation of flexible BSs endowed with a ’hot standby”
mode, which guarantees quick activation times without affecting
BS availability. However, when such new BS models become
available, MNOs will need to determine a migration path to a
new network deployment with progressive replacement of old BS
equipment. In this paper, we propose an approach to quantify the
benefits obtained by MNOs with the deployment of flexible BSs,
in terms of maximum energy efficiency achievable with a given
fraction of flexible BSs in their network. More specifically, we
propose a method for estimating, for a given percentage of flexible
BSs, the energy optimal density of static and flexible BSs, which
is sufficient to serve a given set of active users with predefined
performance guarantees. We show how to apply our method
to derive bounds on the maximum energy saving achievable
through sleep modes, as a function of the fraction of flexible BSs.
We determine the effect of uncertainty in traffic predictions on
sleep modes performance, and we derive indications for optimal
network planning strategies.

I. INTRODUCTION

Sleep modes help alleviating the problem of raising OPEX
(operational expenditures) in wireless access networks, due to
the ever increasing energy costs and to the explosive growth
of mobile network traffic. In cellular networks, sleep modes
(or standby modes, or low power idle modes) are of particular
interest, since energy costs account for a large fraction (up to
50%) of the total OPEX of mobile operators [1]. By putting to
sleep base stations (BSs) in period of low traffic load, standby
modes help reducing the waste of energy and making the whole
network more energy proportional (the energy consumption
becomes more proportional to the actual traffic load). Indeed,
with the presently installed BS models, energy consumption
exhibits only a weak dependency on the amount of traffic
served, going at most up to 40% of the maximum energy
consumed by a BS, in most recent equipment. In such a
scenario, it has been shown [2] that sleep modes are the main
instrument to decrease power consumption in wireless cellular
networks.

In the present networking scenario, the problem is further
aggravated by the fact that mobile network operators (MNOs)

tend to overprovision their networks even with respect to peak
traffic, trying to anticipate the forecasted traffic growth, so as
not to have to update their networks too often.

Over the years, MNOs have deployed different generations
of BSs. Most of the currently deployed BSs do not allow
a ’standby mode’, i.e., a low-power consumption mode that
is designed to save energy (like for TV sets and PCs).
However, these BSs can be turned off, as is done when they
have to be upgraded, repaired, etc. When turning such BSs
back on, a significant delay is incurred before they are fully
operational. Such a slow responsiveness constitutes a constraint
on how closely networks consisting of such base stations
can be adapted to follow time-varying loads. And this, of
course, has potentially a significant impact on the actual energy
saving which can be achieved through sleep modes. Moreover,
currently deployed BSs have not been designed to withstand
on/off cycles with the frequency required by sleep modes.
Applying sleep modes to static BSs might lead to high rates of
equipment failures and of events of malfunctioning, resulting
in lower BSs availability and shorter BSs lifetime. Ultimately,
such problems bring to an increase of the MNO CAPEX and,
through maintenance costs, also of OPEX.

In order to address these issues, new BS designs are
currently being proposed, which better support sleep modes by
implementing a standby state, minimizing in this way also the
effects which frequent state changes can have on their lifetime
[3]. In standby mode, a BS consumes more energy than in
the off state, but less than in the fully operational mode. The
amount of energy consumed, and the time needed to wake up,
depend on the “depth” of the sleep mode, i.e. on which (and
on how many) components of the BS are put to sleep. In any
case, we assume that such flexible BSs can transition from the
sleep mode to the fully operational state very quickly (on the
order of seconds [4]), enabling fast adaptation to changes in
traffic.

Several of the sleep mode algorithms which have been
recently proposed are indeed characterized by frequent changes
in the number of active base stations [5]-[7]. The expectation
is that by adapting closely to traffic variations over time,
further improvements in energy efficiency are achievable with
respect to traditional, slowly adapting, sleep mode algorithms.
However, being tied to a specific algorithm and network setup,
such works do not give a clear idea of the impact of the
adoption of flexible BS models on the potential energy savings
of sleep modes. Moreover, several of the proposed algorithms
do not directly consider user-perceived QoS, or they only



do it a posteriori, assuming some amount of performance
degradation as acceptable, in return for a decrease in the energy
consumed.

In this paper, we propose an approach to quantify the
benefit gained by a MNO through the deployment of flexible
BSs. Our contributions are:

e For a given BS topology, and for a given pattern of
user density variation over time, we propose a method
for estimating the energy-optimal density of static and
flexible BSs, which is sufficient to serve a given set
of active users, with fixed performance guarantees.

e  Through numerical evaluation, we compute bounds
on the maximum energy saving as a function of the
amount of flexible BSs, and illustrate the impact of
various system parameters. We determine the effect of
uncertainty in traffic predictions on the performance of
sleep modes, and we derive indications for an optimal
network planning strategy.

These results are particularly interesting in light of the practical
impossibility of replacing all of a network BSs at once.
MNOs need to identify effective migration paths from current
networks to new, energy-efficient networks. This requires the
estimation of the benefits obtained with the introduction of
a fraction of new BS equipment in their network. Our work
offers a tool for doing just this.

The paper is organized as follows. In Section II we present
our model for the distribution of users and of BSs, and we state
the main assumptions underlying our approach. In Sec.III, we
use the results of the previous sections to compute the energy-
optimal BS density for a given user density, and to estimate the
achievable energy savings. In Sec. IV, we present numerical
results, and we conclude the paper in Section V.

II. MODEL AND ASSUMPTIONS

We consider the downlink information transfer in a cellular
access network. At any time instant, users form a homogeneous
planar Poisson point process with intensity A, (¢) users per
km?2. We focus on a geographical area where we assume BSs
to be distributed according to a two-dimensional homogeneous
Poisson point process, with density A\, BSs per km?. Such
distribution has been shown to approximate reasonably well
some real BS deployments [2].

We consider two classes of BSs, static and flexible, and
three possible operational states: on, sleep, and off. We assume
that static BSs can be either on or off, while flexible BSs can
also be in the sleep state. BSs of both types can only serve
users when in the on state.

We assume that the density of users fluctuates slowly over
time. Typically, transitions between off and on states require a
substantial amount of time (up to 15 minutes in most currently
deployed BS equipment [4]). Therefore, we model a policy
that follows variations in user density over time by dividing
the time of a day into /N periods, within each of which the set
of BSs in the off state is not modified. The duration of such
periods (which is not necessarily the same for all periods) is
much greater than the BS switch-on time. We assume that at
the beginning of each period, such policy turns off BSs based

on a predicted spatial load distribution for the period, allowing
for prediction errors and load fluctuations within the period.
In order to exploit flexible BSs to follow the load fluctuations
within the period, the considered policy divides each of the N
periods into M subperiods, within each of which no BS goes
into or out of the “off” state, but in which flexible BSs can
change from sleep to on, or viceversa. The duration of each
subperiod is much greater than the time required to switch
from sleep to on states (which we assume to be of the order
of seconds).

More specifically, the density of users in the n-th period,
Ay is a random variable with pdf fy.. We assume that at
the beginning of each period, this pdf is known exactly (e.g.
from historical data). The density of users in subperiod m
within time period n, is therefore a random variable with pdf
fau. Note that we assume the user density in a subperiod
to be constant over the subperiod. At the beginning of each
subperiod, we assume that the forecasted value of user density
in that subperiod is predicted exactly. In what follows, we
assume f,\% to be a Gaussian centered at the value of A", with
a variance reflecting the extent of the prediction error for the
n-th period.

A. Channel and Service Model

We do not consider the effects of shadowing or interfer-
ence, and only take into account distance-dependent path loss.
We assume that users are served by the BS that is closest to
them, i.e., by the BS that corresponds to the strongest received
signal, as it normally happens in reality. We denote the capacity
to a user located at distance r from the BS by C(r) bit/s
per Hertz. The capacity can be modeled, for example, using
Shannon’s capacity law, or other models such as a quantized
set of achievable rates. We assume that the network only serves
best-effort traffic. We assume that BSs use a processor sharing
mechanism to divide capacity among all the connected best-
effort users. By doing so, a notion of fairness is imposed, since
all best effort users associated with a particular BS are served
for an identical fraction of time.

We use the per-bit delay seen by the typical user (7°) as
the performance metric. It is defined as the inverse of the
short-term user throughput, i.e., the actual rate at which the
user is served, averaged over a short time with respect to the
time constant of the variations in user density, and taking into
account the capacity to the user as well as the sharing of the
BS time across all associated users. Here, the interpretation
of a typical user is that provided by Palm theory [8], and 7
is computed as the expectation of 7 with respect to the Palm
distribution P © associated with the point process of users.

We assume that the performance target of any sleep mode
policy in the network is to keep the average per-bit delay in
each period above a given threshold 7, with probability py,.
Note that we do not consider the effect of interference.

B. Energy Consumption Model

We assume that BSs always transmit at a fixed transmit
power. When the BS density is higher than that required to
achieve the threshold expected per-bit delay 70, we assume
that BSs only serve users for the fraction of time required
to satisfy the performance constraint, and remain idle (i.e.,



not transmitting to any user) for the rest. We denote with
U the utilization of BSs, i.e., U is the average fraction of
time in which the BS is transmitting. When a BS is on, we
model its power consumption as a constant plus a component
proportional to BS utilization. The energy consumption of a
BS with utilization U in on state is modeled as: poy, + GonU.
In such an energy model, p,, is the power consumed by
keeping a BS turned on with no traffic, while g, is the rate at
which the power consumed by the BS increases with the BS
utilization. We assume that BSs in the off state consume power
Doy s» and flexible BSs consume power p, in sleep mode, with

0 = Poff < ps < Pon-

C. Sleep Modes Strategy

We assume that all BS densities are feasible. In the
homogeneous Poisson process layout of BSs, if each BS
independently makes a decision to either turn off, or stay on,
according to some probability, the resulting point process of
active BSs is a thinned homogeneous Poisson process, and
all BS densities are indeed achievable. We therefore restrict
ourselves to strategies that turn each BS off (or set it to
sleep mode) independently of the other BSs in the network,
with a certain probability. Thus, we can specify a strategy by
only specifying the densities of BSs that are on, off, and in
sleep mode. Since, in actual BS deployments, not all densities
are feasible due to coverage constraints, limitations due to
law, etc., the results we obtain can be considered bounds
to the maximum energy saving achievable with sleep mode
strategies.

III. A METHOD FOR EVALUATING THE IMPACT OF
FLEXIBILITY ON ENERGY EFFICIENCY

In this section we present our method for estimating, for
every time instant, the energy optimal density of active BSs
(static and flexible), and its associated energy consumption.
Our method consists in two steps. In the first step, for each
period, we derive the total density of BSs which satisfies the
performance target with the given probability. In the second
step, within each subperiod, we show how to determine the
density of flexible BS which should be active in order to satisfy
the QoS constraint in terms of target per bit delay, in response
to fluctuations in user density.

A. Derivation of the Energy-Optimal BSs Density

In this subsection we present the method we use for the
derivation, for a homogeneous Poisson distribution of users
and of BSs, with density A, and A, respectively, the minimum
density of BSs which allows serving users while meeting the
performance target in terms of maximum expected per-bit
delay. This method was originally derived in [2].

The central result of this method is an expression which
characterizes the expected per-bit delay seen by the typical user
who is just beginning service, as a function of the density of
users and BSs.

Theorem 3.1: The average per-bit delay 7 perceived by a

typical best-effort user joining the system is given by:
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where A(r,z,0) is the area of the circle centered at (x,6)

with radius x that is not overlapped by the circle centered at
(0, —r) with radius 7.

dr. (1)

For a given density of BSs and of users, the performance
constraint that is enforced is as follows: if the per-bit
delay experienced by a typical user, 7, is less than a
predefined threshold 79 seconds, then users are said to
perceive satisfactory performance, and the corresponding BS
distribution is feasible. Given the expression of the expected
per bit delay, the energy optimal BSs density is derived by
solving the following optimization problem:

OPTIMIZE(\,, 7o)

T(Ap, A
minimize )\, (pon + Qon T(b’)>
Ay 70 (2)
subject to 7(Ap, A\y) < T

A >0

OPTIMIZE can easily be solved by exhaustive search,
being a problem with only one variable. For energy models
which are completely insensitive to traffic (i.e. ¢,, = 0) this
problem boils down to finding the BS density which satisfies
the constraint on 7 with equality, i.e. the minimum feasible
density for a given user density.

B. Characterization of Optimal Strategies

Any sleep mode strategy has to adapt to variations in traffic
load by periodically changing the configuration of the network.
How frequently this is done depends on the period of the
day, as well as on traffic characteristics, and is constrained
by the time it takes to switch on/off a static BS, by the
time it takes to collect statistics about the traffic, to elaborate
a new configuration for the network, and to apply the new
configuration, migrating users away from BSs which are to
be turned off in a way which does not impact their perceived
QoS. Since the typical time for turning on a static BS can
be assumed to be around 15 minutes, a reasonable minimum
period between two changes in BSs configurations can be of
the order of one hour.

In networks where a given amount of flexible BSs is
available, sleep modes have to take advantage of their fast
response times while coordinating flexible BSs management
with the periodic switching on and off of static BS. Moreover,
as flexible BSs still consume a non-negligible amount of
energy while in standby mode, it might still be necessary
to periodically put them into cold off state in periods of
low traffic load. Since the speed at which the set of flexible
BSs can adapt to traffic variations is much higher than the
speed at which static BS can be adapted, sleep modes in
such a mixed environment are generally composed by a slow
sleep algorithm, and by a fast adaptation algorithm. While the



slow sleep mode acts on all base stations, the fast adaptation
algorithm only manages those BSs which can be put in on
state within seconds. Slow sleep modes, being characterized
by relatively long response times due to the time taken by
switching on/off a device, act mainly based on predictions of
average user density, while fast sleep modes are mainly based
on real time measurements of traffic load.

An optimal slow sleep strategy needs to determine, for
each period, the energy-optimal maximum density of active
BSs (static and flexible) such that the target performance is
achieved with the given probability within that period. That
is, it has to guarantee an average per-bit delay which is above
the target value with a probability p;;,. Since we assume that
at the beginning of each period the pdf of the user density
is known, the minimum value of user density A;;, such that
the probability of the user density being larger than A\, be
less pyp, can be derived as f_)‘;’o fr)dl > psp. Then the
maximum density of active BSs (flexible and static) sufficient
to satisfy the performance target can be derived by solving
OPTIMIZE(\!" 7). In this way, we determine the energy-
optimal fraction of BSs which should be active during the
period, as well as the maximum power consumption over the
period (worst case, in which all BSs which are not in off state
are active during the whole period). Of course, the larger the
prediction error, the more conservative will be the estimation
of such quantities.

In each period, we assume that those static BSs that cannot
access sleep modes, are turned off first, and flexible BSs are
turned off only after all the static BSs have been turned off.
This in order to always have the maximum flexibility in the
network. Note that this is an optimal behavior for sleep modes
only because the energy model of flexible BSs assumes the
same power consumption in the on state as for static BSs. If
this would not be the case, then the method we have presented
can be easily adapted in order to optimize, over the whole day,
also over the share of flexible BSs.

As for the “fast” sleep modes, for each subperiod within the
considered period, an optimal sleep strategy should determine
the energy optimal density of flexible BSs which should be
in on state, given the traffic measurements and user density
forecasts up to that time, and set to sleep/on state a given
amount of flexible BSs accordingly. We assume the duration
of the subperiod to be short with respect to the speed at which
user density varies over time, so that we can assume the value
of user density in the subperiod to be known, possibly with
some error margin §. Then, the energy optimal amount of
flexible BSs to be activated in the m-th subperiod of the n-th
period is obtained by solving OPTIMIZE(\, .. +6,7), and by
subtracting from the resulting BS density the density of static
BSs which are active during that period.

IV. NUMERICAL EVALUATION

In this section we apply our analysis method to a simple
network scenario, in order to estimate the increase in energy
efficiency associated with the introduction of flexible BSs, for
a specified target quality of service.

We assume in our analysis that the BS transmit power p is
10 W. BSs work at a frequency of 1 GHz, and use a bandwidth
of 10 MHz. We use a log distance path loss model, with path

TABLE L. PARAMETER VALUES USED IN THE NUMERICAL

EVALUATION.
Parameter Value
BS transmit power p 10 W
Bandwidth 10 MHz
Path loss exponent « 3
Maximum BS power consumption 1500 W
Power in idle state 900 W
Power consumed in standby state 450 W
Target per-bit delay 7o 1 ps, 10 ps
Peak user density 100 users/km?
Minimal duration of a period 15 minutes
Threshold violation probability p;j 1%, 2%

loss at a reference distance of one meter calculated using Friis
equation, and with a path loss exponent o = 3. We assume that
the data rate perceived by users is given by Shannon’s capacity
law. Thus, the capacity to a user located at a distance r from

the base station is given by C(r) = 107 log, (1 + p}"\,oq) bit/s,
where Ny = —174 dBm/Hz is the power spectral density of
the additive white Gaussian noise. In accordance with typical
values found in the literature for currently deployed BSs, we
assume the maximum power consumption of a BS (i.e., the
one at 100% utilization) to be 1500 W. Moreover, we choose
the fraction of power consumed by a BS at zero utilization to
be 60% of the maximum, in accordance with typical values
found in the literature [4]. We assume that, in the on state,
static and flexible BS have the same energy model. In the
sleep state, unless otherwise stated, we assume flexible BSs
consume 30% of the maximum, and we assume no energy is
consumed in the off state by both types of BSs.

Unless otherwise stated, we assume a 2% probability for
the user density to be larger than the threshold value in any
period. The target value of expected per bit delay is set to 10

1S.

In order to model the variation of the average user density
over 24 hours, we use a classical m-shaped curve (see for
instance [9]) where the peak user density is set to 100 users
per km2. The curve, shown in Fig. 1, is derived from data
measured in the cellular networks of a large Italian mobile
operator, and it is relative to a working day in the city of Pisa.
We assume the user density prediction error to be Gaussian
distributed.

In a first set of evaluations, we consider equally sized
periods of 3 hours, starting at midnight. For each period, the
threshold user distribution is computed over a Gaussian, whose
mean is equal to the maximum average user density within the
3 hour interval. Therefore, in each period, the threshold user
density is determined by both the prediction error o and the
variation of the average user density during that interval.

In Fig. 2 we analyze the impact of the prediction error
on the energy saving, as a function of the percentage of
flexible BSs in the network. The percentage of flexible BSs
is computed with respect to the maximum, over the day, of
the total density of BSs required to serve the users with the
given performance target. The daily energy consumption is
normalized with respect to the ideal case of perfect forecast,
with no prediction error. The curves show the effect of the
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prediction error, in terms of standard deviation over the mean
(relative standard deviation — RSD), on the efficiency of the
sleep modes. We can see how a prediction error with a 33%
RSD increases the energy consumed by an optimal sleep mode
of 34% with respect to the ideal case of no prediction error. As
expected, we see that the use of flexible BSs helps recovering
part of the loss in energy efficiency due to uncertainty in traffic
forecasts. From the plots we see that, as a rule of thumb, for a
standard deviation of the prediction error of %, substituting
x% of the static BSs with flexible ones is enough to get all the
possible benefits out of flexibility. Indeed, through the energy
consumed in sleep mode, flexible BSs end up contributing to
the OPEX of the network too, and thus prevent from recovering
in full the energy cost of uncertainty in traffic prediction.

In Fig. 3 we plot the percentage of energy saved, in one
day, by an optimal sleep mode strategy with respect to the
configuration in which all BSs are always active, as a function
of the percentage of flexible BSs. We see that the higher
the prediction error (measured in terms of relative standard
deviation, or RSD), the higher the savings due to sleep modes.
Indeed, as the prediction error affects the optimal maximum BS
density, sleep modes allow to save between 25% and 33% of
the energy consumed in one day, as a function on the prediction
error, even with no flexible BS. Moreover, such plots show that
by introducing flexible BSs, the sleep modes savings increase
of about 12%.
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BS.

As already discussed, one of the main problems related
to the introduction of sleep modes is that presently available
BSs are not built for being frequently turned on and off.
As a consequence, applying sleep modes to static BSs might
bring to much higher failure rates and to malfunctioning, thus
shortening the BSs lifetime. Ultimately, such problems lead to
an increase of the CAPEX and, through maintenance costs,
of the OPEX of the MNO. We assume that future BSs will
be designed to better support sleep modes by implementing a
standby mode, minimizing in this way also the effects of on/off
cycles on their lifetime. For this reason, we analyzed the case
in which only flexible BSs implement sleep modes, while static
BS are never turned off. In Fig. 3 we plot the energy saving
relative to this configuration. We see how replacing 30% of
the static base stations with flexible BSs brings energy savings
between 10% and 20% over a whole day. These results show
the importance for MNOs of an accurate prediction of their
daily traffic, in order to achieve the best performance with
sleep modes. From the plots we can also see how decreasing
the target mean per-bit delay brings to higher achievable energy
efficiency. This is a consequence of the fact that tighter QoS
constraints require a higher density of base stations, and a more
conservative dimensioning of the network configuration, thus
leaving more room for optimization through dynamic network
management algorithms. Finally, we see that bringing the
threshold violation probability py;, (defined in Section III-B)
from 2% to 1% does not affect significantly the achievable
energy savings.

A. Impact of the Traffic Adaptation Strategy

One of the most important aspects of a sleep mode strategy
is the determination of the frequency and the time at which the
set of active BSs should be changed in order to adapt to traffic
variations. In settings with a mix of flexible and static BSs,
this is still an open problem. In particular, it is not clear if the
presence of flexible BSs and fast adaptation algorithms makes
it still useful to also adapt frequently to traffic variations, given
the impact that on/off cycles may have on the BS availability
and lifetime.

In order to clarify this, we consider different possible ways
of defining the periods during which the set of BSs in off
state cannot be modified, and evaluate their impact on potential
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energy savings of sleep modes. More specifically, we assume
that the 24 hours are divided into the minimum number of
periods such that, within each period, the variation of average
user density is less than Y% of the maximum user density
over the 24 hours. Moreover, we impose a minimal duration
of a period of 15 minutes. In Fig. 4 we plot the achievable
energy savings with respect to the absence of sleep modes, as
a function of the fraction of flexible BSs, for three different
values of the maximum variability Y. By increasing this last
parameter, of course, not only the number of periods changes,
but also their position in the day and their durations. As
expected, by decreasing Y we allow “slow” sleep modes to
follow more closely variations in user density over the day,
improving the achievable energy saving. However, we also
note how these improvements are only of the order of few
percentage points, so that a strategy with only three periods
does not lose much with respect to one with 21 periods. Rather,
we see how the introduction of 30% flexible BSs has a much
stronger impact on energy saving.

We also evaluated what happens when the power consumed
in standby mode goes from 30% to a more optimistic 10% of
the maximum nominal power (a setting which is still realistic
if we consider, for instance, the amount of power consumed by
PCs in standby mode [10]). As expected, this improves both
the marginal increase in energy efficiency, and the maximum
energy efficiency achievable when flexible BSs are introduced
in the network.

As we already discussed, for ”slow” sleep modes, the cost
of switching BSs more frequently during the day is not only
due to the possible decrease in availability of BSs. It also
entails an energy cost, due to the time it takes to bring on a
BS and to redistribute traffic among neighboring BSs. We can
quantify the impact of these costs by assuming a switch-on
time of 15 minutes, during which the BS consumes 70% of
the power in on state with no traffic. Moreover, we can assume
it takes 5 minutes to turn off gracefully a base station, during
which the consumption is the same as in the on state. From
Fig. 4 we can see that these on/off costs have a marginal impact
on the achievable energy savings, and we have also verified
that they do not vary significantly with the number of periods,
or with the prediction error. Indeed, for a traffic profile such
as the one in Fig. 1, for periods with a minimal duration larger
than 15 minutes, the vast majority of BSs are turned on and

off only once per day, since the traffic profile boils down to
one peak and one low per day.

V. CONCLUSIONS

In this work, we characterize the value of having flexibility
in a fraction of the BSs which are used to implement the
access network of a MNO. We call flexible those BSs which, in
addition to the on and off operating modes also allow a standby
mode, which can be used for the implementation of the sleep
algorithms which are proposed for the improvement of the
proportionality between carried traffic and consumed energy in
today’s networks. We present a method for the computattion of
the benefit in terms of maximum energy efficiency achievable
with a given fraction of flexible BS. Our proposed method
also helps evaluating the impact of load predictability on
the potential energy savings achievable by QoS-aware sleep
modes. Our results can be used by MNOs to run a cost versus
benefit analysis for sleep modes with flexible BSs, and in
particular to determine the marginal benefit of increasing the
amount of flexible BS in their network, thus being able to
devise an effective migration path to energy-efficient cellular
networking.
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