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Abstract—One of the most critical aspects of anticipatory
networking is assuming that future system conditions can be
estimated. In this paper we address how accurate the current
state of the art predictors are in providing a forecast of short
term throughput. We propose a simple model for the short
term prediction error based on Gaussian Random Walks that
allows for mathematical analysis of the impact of imperfect future
knowledge on network optimization.

I. INTRODUCTION

Recent interest in anticipatory networking is motivated by
the increasing volume of mobile data traffic and the need for
energy efficiency in mobile networks [1]. In particular, the
work in [2]–[4] discusses how future network state information
can be obtained and exploited to add a temporal dimension to
network optimization problems.

In addition, the dynamics of cellular data networks have
been thoroughly studied in many works such as those by
Paul [5] or Shafiq [6], which show the link between network
performance and user mobility as well as other intrinsic
correlated aspects that advocate prediction feasibility.

In our previous contribution [7], we analyzed the state of
the art in mobile throughput and user mobility prediction in
order to derive a composite model for prediction error. Short
term prediction, shown in Fig. 1 on the left, is most often based
on time series filtering techniques [8], [9], while medium and
long term prediction, shown on the right, is usually derived
from mobility aspects and networks dynamics.
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Fig. 1. Capacity availability prediction uncertainties: short term predictors
are useful until time Tc, while the medium term model is used until slot Te.

In this paper, we will focus on predictors represented in
the left part of the figure, where the solid line represent a
possible trace of throughput evolution. The dashed lines show
the boundary of the region the prediction is likely to fall in.
The short term predictors start to be useless at time Tc when
the prediction error is as big as that obtained by randomly
drawing the next samples from the statistic distribution of the
original phenomenon. Statistical distribution can be used from

Tc until Te, the time when no statistical considerations can be
derived from mobility prediction.

In particular, we model the short term prediction error of
a Gaussian random walk, which provides a close fit to the
original random process and allows for a simple mathematical
analysis of the impact of imperfect prediction on network
optimization.

In Section II we discuss the model use to derive mobile
networks characteristics and the filtering technique we used
for prediction. Section III gives details on prediction error
and present our Gaussian random walk model. Section IV
concludes the paper.

II. SYSTEM MODEL

This section focuses on the prediction of downlink rate
between base station (eNodeB) and user equipment (EU). User
throughput in mobile networks depends on several aspects
and it is most always modeled as a function of the signal
to interference plus noise ratio (SINR) γ and the number of
active users in the cell K . The SINR is usually modeled as
a function of the distance d between eNodeB and UE, the K
active users and the scheduler type.

In what follows we specifically address LTE technology
and the related throughput model proposed by Østerbø [10]
for the case of proportional fair scheduler and the K users
uniformly distributed in the cell coverage area. According to
this model, the throughput g can be expressed as:

g = η(γ0d
−αr(K))/K, (1)

where η(x) is a piece-wise constant function associating
throughput to SINR ranges, γ0 is a constant scaling factor
related to environmental and system parameters (e.g., transmit
power, antenna gains, etc.), α ∈ [2, 4] is the exponent of the
pathloss law and r(K) is the fast fading gain and depends on
K to model opportunistic gain achieved by the scheduler.

A throughput value obtained from Eq. (1) has a coherence
time Tf which is inversely proportional to the user movement
speed s [11]. Thus, we average ⌈Ts/Tf⌉ throughput values to
filter fast fading variations.

In order to obtain user movement traces we let the user
move with constant speed and direction in an area where cells
are randomly placed. In particular, the position of each eNodeB
along the user path is chosen so that the maximum distance
between the UE and the closest eNodeB is never larger than a
given communication range. Every Ts seconds the UE-eNodeB



0

2

4

6

0

2

4

6
−0.02

0

0.02

0.04

0.06

0.08

User speed s [m/s]Sampling period Ts [s]

E
rr
o
r
in
cr
em

en
t
A
(s
,T

s
)

0

2

4

6

0
2

4
6

−0.06

−0.04

−0.02

0

0.02

User speed s [
Sampling period Ts [s]

E
rr
o
r
o
ff
se
t
B
(s
,T

s
)

1
2

3
4

5

1
2

3
4

5

0

100

200

300

400

User speed s [m
Sampling period Ts [s]

P
re
d
ic
ti
o
n
le
n
g
th

T
c

Fig. 2. Comparison between the collected data and the fitted model varying s and Ts. Starting from the left, the figures show the approximation of the A
(left), B (center) and Tc (right) parameters as surfaces and the distance from the surface to the actaul data as lines.

distance is measured as the distance between the UE and the
closest eNodeB in the area. The eNodeB random placement
is equivalent to assume random variation in the user speed
and constant distance between eNodeBs. In order to contain
the dimensionality of the problem, in this paper we only
study movement sequences characterized by constant speed
and direction.

For any given tuple of parameters (s, Ts) we can generate
any number of sequences D(s, Ts) = di, i ∈ [1, Tl] of any
length Tl. Subsequently, we can generate throughput sequences
G(s, Ts,K) = gi, i ∈ [1, Tl], where gi is obtained by averaging
⌈Ts/Tf⌉ values obtained from di through Eq. (1).

For what concerns prediction itself, we limited our focus on
autoregressive and moving average (ARMA) filters. We choose
this technique, because it is well studied and it is simple to
implement in mobile phones. The basic ARMA model is as
follows:

Xi = c+ εt +

p
∑

j=1

ϕjXi−j +

q
∑

k=1

θkεi−k, (2)

where c is a constant, εi are white noise error terms, ϕj ,
θk, p and q are the autoregressive and the moving average
coefficients and their respective orders and Xi is the reference
signal. This model is referred to as an ARMA(p, q) with
reference to the order of the two parts of the filter. To determine
the order to be used, we followed the Box-Jenkins method [12]
using automatic inspection of autocorrelation and sampled
partial autocorrelation functions.

To generate error sequences and their statistics we operate
as follows: first we obtain the optimal order of the ARMA
filters to be used and, for each tuple of speed and sampling
period (s, Ts), we generate a single very long training se-
quence GT (s, Ts,K) from which we tune the filter coeffi-
cients; subsequently, we generate shorter throughput sequences
Gi(s, Ts,K), i ∈ [1, 100] to test the filter on. In particular,
we obtain filters F (s, Ts,K) from GT (s, Ts,K) and we use
the filters to predict the sequences G̃ij(s, Ts,K) = g̃ijk, i ∈
[1, 100], j ∈ [1, 100], k ∈ [max{p, q}+ j,max{p, q}+ Tp + j]
or, in other words, from each of the 100 sequences we generate
100 predicted sequences starting at different points and long
Tp values. Finally, we compute errors eijk = g̃ijk − gik
and the error sequences Eij(s, Ts,K) from which we further
obtain the sequences σ2

k(s, Ts,K) = E[(eijk−µ)2]/σ2

G, which
represent the variance of the k-th prediction error normalized
to the variance σ2

G of the original training signal GT (s, Ts,K).

III. PREDICTION ERROR MODEL

This section proposes to use a Gaussian random walk to
approximate the sequences Eij(s, Ts,K). Gaussian random
walks are interesting, because their total variance at time t is
proportional to the interval duration and they can be expressed
as a sum of i.i.d Gaussian random variables.

Before approaching the fitting of the model itself, we
verified that assuming the error sequences to be drawn from
zero mean normal distribution was a valid hypothesis. To do
so, we perform the Kolmogorov-Smirnov [13] test between the
generated error sequences and theoretical normal distributions
with zero mean and the same variance as the error sequences.
All the tests performed rejected the null hypothesis according
to which the error and the normal distributions are not equal.

Subsequently, by visual inspection of the σ2

k(s, Ts,K) we
noticed that: i) it increases with the prediction distance k,
ii) the steepness is increasing with both s and Ts; iii) the
minimum error is decreasing with both s and Ts; iv) Tc can
be obtained as the minimum k so that σ2

k(s, Ts,K) = 1; v)
the number of active users K has a negligible impact on the
prediction error.

Thus we are looking for a family of linear equations that
approximates the variance sequence:

σ2

k(s, Ts) =

{

A(s, Ts)k +B(s, Ts) k ≤ Tc/Ts

1 otherwise
, (3)

where A(s, Ts) represent the steepness and B(s, Ts) the offset
of the process or, in other words, how fast the prediction
reliability decreases and how large is the intrinsic randomness
of the process respectively. According to ii) and iii) we fit two
linear functions on the sTs product to approximate A and B
respectively and we obtain:

A(s, Ts) = A1sTs +A2

B(s, Ts) = B1sTs +B2. (4)

Fig. 2 shows how close the model fits the data. The model
coefficients have been obtained from the original sequences by
imposing a perfect match for s = 1 and Ts = 1 and minimizing
the least square error in the other points. In particular, Fig. 2(a)
and 2(b) show the surfaces obtained from Eq. (4) and the
distance from the actual data and the surfaces. Also, Fig. 2(c)
show the prediction validity length derived from the model
Tc = Ts(1 − B(s, Ts))/A(s, Ts) (surface) compared to the
same obtained from the data.
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Fig. 3. Comparison between model and data for different s, Ts couples.
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Fig. 4. Contour plots of the average distance between the model and the
data.

Fig. 3 visualizes how the model fits the data for a few
speed-sampling time couples: solid and dashed lines represent
the normalized variance σ2

k obtained from the data and from
the model respectively; square, diamond and circle markers
identify the (s, Ts) couple as (1, 1), (2.5, 2.5) and (5, 5)
respectively. In all the three cases the model fits the curves
reasonably well and is always providing a conservative ap-
proximation: the predicted error is always larger than obtained
from actual data.

Fig. 4 shows contour plots of the average approximation
error. Bold lines are marked with the actual error value, which
is most always smaller than 2 %, but for 1 ≤ Ts ≤ 3 and
s < 1.5 where it is slightly larger than 5 %. This is mainly
due to two effects: the randomness of the original signal is
higher and the linear fitting is less appropriate for small s and
Ts as a consequence of the stronger impact of fast fading and
a slower prediction reliability degradation respectively.

Finally, we conclude that Gaussian random walks can be
used as a valid model for short term prediction errors since they
can reproduce the main characteristics of the original random
process. Also, random walks allow for an easier analysis of
prediction based optimization problems: in fact, it is possible
to approximate the distribution of the prediction error as a
sum zero mean Gaussian variables: one of variance B(s, Ts)
accounting for the sequence inherent randomness and k with
variance A(s, Ts) each to account for decreasing reliability of
the prediction after k steps.

Hence, since the model is conservative with respect to the

uncertainty introduced by imperfect prediction, optimization
algorithms’ performance obtained through this approximation
are conservative as well. Thus it will be possible to derive
optimization algorithms leveraging on the prediction reliability
in order to mitigate the effects of uncertainties.

IV. CONCLUSION

This paper analyzed the short term prediction error for
throughput sequences and proposed an approximated model
based on Gaussian random walks. The model provides a
compact description of prediction error based on user mobility
parameters and prediction time.

Due to its simplicity, the model allows for closed form
mathematical analysis of resource allocation optimization
problem exploiting throughput prediction. Our current inves-
tigation topics include the model validation real data and
its exploitation to derive performance bounds for resource
allocation algorithm working with imperfect knowledge.
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