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ABSTRACT

Time-of-Flight (ToF) echo techniques have been proposed
as a way to estimate the range between regular Wi-Fi sta-
tions. Recent works either did not address practical ques-
tions for deployability, or made evaluations in basic setups,
or used advanced 802.11 hardware designs. We build an ap-
proach solely deployed using ToF measurements and relying
on software access point (AP) upgrades of simple commer-
cial off-the-shelf 802.11 chipsets. Our solution filters noisy
measurements collected by WiFi chipsets of six dollars each,
it has been tested across different and heterogeneous setups
and testbeds, and has the potential to enable ToF ranging
in every Wi-Fi chipsets.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless Communication
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1. INTRODUCTION

In the attempt to find an alternative to error-prone signal-
strength based ranging measurements [3,5,10,13,16], Time-
of-Flight (ToF) echo techniques have recently received atten-
tion by the research community. The underlying principle of
ToF is that the distance between two devices is estimated us-
ing the time that the signal travels between two devices, with
the advantage of being much less susceptible to the diversity
of the obstacles between the devices [8,14]. The intuition
is that electromagnetic waves travel at a speed that is close
to the speed of light for most propagation media in typical
indoor environments, and thus the signal propagation speed
is fairly independent on the environment, obstacles, etc.
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Despite of these advantages, ToF measurements are very
sensitive to noise since, at the speed of light, a measurement
error of 1us already results in a distance estimation error of
300 meters. This noise is further exacerbated when using
Commercial Off-The-Shelf (COTS) WiFi devices for a cost-
effective and wide-spread implementation. Recent efforts
could increase the accuracy of ToF at the cost of leveraging
advanced hardware designs available in more recent WiFi
chipsets [14]. However, most of the Access Points (APs) in
the world are still deployed with older hardware, and it is
economically not possible to change all the APs with newer
hardware in the near future (and also not appealing in terms
of electronic garbage).

We leverage the existing 802.11 protocol timing specifica-
tion (and nothing more than that) to build a system that
runs on COTS APs to estimate the distance to target sta-
tions. We rely on a customized firmware operating in the
core of the 802.11 MAC state machine of a low-cost Wi-
Fi chipset (cost per unit of less than six dollars). To deal
with the intrinsic challenges of noisy ToF measurements, we
develop an adaptive filter which manages to predict the dis-
tance despite the large noise introduced by the devices and
the multipath reflections in indoor environments.

Our approach has been tested across various setups and
testbeds. We show that our filtering technique needs just a
few samples to estimate the distance range with a median
error of 1.7 — 2.4m and a 80-percentile error of 3.7 — 5.8 m,
comparable to [14] (median error of » 1m and 80-percentile
error of ~ 5m) that required advanced inputs from the hard-
ware such as channel state information per antenna. Our
solution further outperforms recent works such as [8].

Given its simplicity, the principles discussed in our work
can be applied to any old and new 802.11 AP already de-
ployed, just with software upgrades.

2. BACKGROUND AND CHALLENGES

This section describes the basics of WiFi ToF ranging and
highlights various real-world challenges that arise when ap-
plying this technique with simple off-the-shelf devices.

2.1 WiFi ToF Ranging Technique

While traditional ToF-based echo techniques as employed
in radar systems rely on uncoded RF signals and their re-
flections, WiFi echo techniques use regular frames of com-
munication. In WiFi communication, every DATA frame is
acknowledged by the receiver with an ACK frame. Since
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Figure 1: Principle of the Wi-Fi ToF echo technique.
In the example, dr offset is originated at the tar-
get device, and it depends on the hardware delay to
schedule the ACK at the target device. Not shown
in the figure, time offset may be also generated at
the measuring device.

the interframe time between the DATA and ACK frames is
fixed by the 802.11 standard (the Short InterFrame Symbol,
SIF'S, time), the delay between DATA and ACK frames can
be used to infer the distance between two nodes. However,
ToF-based ranging estimation is affected by severe noise and
has thus long been considered impracticable for WLAN lo-
calization. Back then, [12] suggested that the accuracy of
spacing between a DATA and ACK frame that are defined
to be separated by a SIFS time is up to 2 us, equal to 600 m
of error, and too high for indoor localization. However, the
technique was studied in [6,9,11,15] (subjected to variable
jitter and very high dispersion), and later refined in [7,8,14]
showing that better accuracy is achievable than the wort-
case bound dictated by the maximum SIFS tolerance.

ToF ranging can be formulated as follows. If d is the
distance between a local station and a target, the measured
time-of-flight tmpas(d) between a sent DATA frame and a
received ACK frame is expressed as

tMEAS(d) :Z'tp(d)+tACK+6, (1)

where tp(d) is the signal propagation time between the trans-
mitter of the DATA frame and the target (channel reci-
procity is assumed), tack is the time needed to transmit the
ACK, ¢ is an offset depending on the target and local sender.
The distance to the target device is then inferred as

dA" = %‘(tMEAS(d)_tACK_(S)’ (2)

where ¢ is the speed of signal propagation which is close
to the speed of light in air. Assuming that N consecutive
samples {d,} are collected, the distance between the local
station and the mobile device is finally estimated as:

d = f(du), 3)

where f is either the expected value on the input data or
any other estimator.

Firmware integration. To alleviate any unnecessary
source of noise or instability, the time measurements tapgas(d)
have to work as close as possible to the radio hardware. The
best location to fully control the measurement is therefore
in the firmware of the WiFi radio chipset, rather than in
the driver as proposed in [8]. To measure tygpas(d) in the
firmware, we have customized the open-source 802.11 open-
FWWF firmware'. This firmware is written in assembler

"http://www.ing.unibs.it/openfwwt/
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Figure 2: ToF measurement architecture. The fig-
ure shows the interaction between firmware, driver
and user space. Measured data from the firmware
is transferred to the driver through shared memory.
Buffered ToF measurements are then sent to user
space.

and runs on off-the-shelf 802.11 Broadcom chipsets, such
as the ones widely used in Linksys APs. Our customized
firmware reports tmras(d) for each successful transmission
of an 802.11 DATA frame. The timing is regulated by the
general purpose timer, running on the wireless card’s inter-
nal clock at a rate of 8 MHz. The timer starts to count
clock cycles just after the 802.11 processor sets up a register
to indicate that a frame has been sent. Once the ACK frame
has been received (or the ACK timeout has elapsed), another
register is updated and the timer gets stopped. Every time
a measurement is made, the firmware writes tygpas(d) into a
defined address of the shared memory (SHM). The measure-
ment architecture is shown in Fig. 2. Since the driver has
also access to the shared memory block, it can retrieve the
measurement every time an ACK is received®. In the driver,
we gather additional data about the incoming ACK such as
the data rate, MAC addresses, etc, and store them all in
a buffer. Once this buffer is full or a timeout elapsed, the
data is transferred to the user space with the help of UDP
sockets.

2.2 Real-world Challenges

In the real-world, ToF measurements are affected by large
noise coming from the timing imprecision of off-the-shelf
WiF1i devices. The offset § is given by:

d = 8T+8L, (4)

where §r and 8p are the offsets of target station and local
sender, respectively. In addition, the multipath signal prop-
agation characteristics of complex indoor environments play
an important role to ToF measurements. In the following,
we describe the main sources of noise and how they affect
the accuracy of ToF ranging.

Target and measuring noise. The 802.11 standard
specifies the SIF'S time between the reception of a DATA and
the transmission of an ACK at the receiver as a fixed inter-
val. In 802.11b, for example, this time is specified as 10 us [2].
However a relatively high tolerance of 1 us is tolerated which
can result in significant noise and distance estimation er-
rors up to 300 meters if the target would fully exploit this
specified tolerance level. While most chipsets may not fully
exploit this tolerance, the dispersion is still quite significant.
To illustrate this, Fig. 3 on the left represents the result-
ing dispersion of a typical Broadcom WiFi chipset as target
device. The shown histogram was obtained by estimating
the distance d, according to Eq. (2) for 10000 packets. To

2We operate in promiscuous mode which allows us to know
in the driver when an ACK has been received and thus a
new data is available in the SHM.
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Figure 3: Noise introduced by ToF ranging. Tests
with controlled environment (Cable) show that the
there are sources of large dispersion in the estima-
tion. Tests over the air (LOS and NLOS propaga-
tion) show that the distribution greatly depends on
the channel conditions. All the tests are in addi-
tion subject to quantization noise and other spurious
noise sources.

avoid any dispersion from environmental effects, the mea-
surements were performed over a coaxial cable of 13.5 meters
length. As we can see, there is heavy noise in the measure-
ment setup that leads to distance estimations ranging from
0 to 25 meters.

Environmental noise. It is well known that signal prop-
agation in complex indoor environments is subject to mul-
tipath effects in which multiple copies of the transmitted
signal arrive at the receiver over different reflected paths.
It is even possible that the direct component is entirely at-
tenuated and the signal is received only over indirect paths.
Since signals that travel over indirect paths will take longer
to arrive at the receiver, they introduce an error in the dis-
tance estimation when considering the time-of-flight. This
situation is shown in Fig. 3 in the middle and on the right
where the same experiment as on the left was repeated but
for a line-of-sight (LOS) and non-line-of-sight (NLOS) sig-
nal propagation link over omnidirectional antennas. The
dispersion spans a range of 40 and 60 meters for the LOS
and NLOS links respectively. In addition, the NLOS link
shows a skewed distribution, suggesting that the signals are
received from different propagation paths over the duration
of the experiment. Multipath effects must therefore be taken
into consideration in order not to overestimate the distance
when dealing with reflected signal propagation paths. Fi-
nally, multipath may also happen in LOS links, and thus a
method robust to the propagation conditions must be de-
signed.

Additional sources of noise. Off-the-shelf WiFi chipsets
have not been designed to provide accurate ToF measure-
ments. Additional noise therefore comes from the coarse
clock resolution of the radios. For example, the Broadcom
chipset operates with a reference clock of 88 MHz, corre-
sponding to a maximal distance resolution of 1.7 meters. In
addition to this quantization noise, off-the-shelf chipsets in-
troduce all sorts of considerable additional noise. As we
could see in the histograms of Fig. 3, the shape of the distri-
bution is far from being smooth despite using 10000 samples
to create the histograms, suggesting that the radios must
have some bias when measuring the time. The measurement
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Figure 4: QQ plots for LOS links. The plots show
that the error of the local offset has a negligible im-
pact on the noise of tygpas(d).

noise must therefore also be factored in to estimate the dis-
tance.

3. TARGET AND MEASURING NOISE

To dissect the relative importance of the noise of the tar-
get station with respect to the local noise, we use a wideband
oscilloscope (Infiniium 90000A Oscilloscope) with a fast sam-
pling rate of 10 GS/s to measure the target offset dr. A horn
antenna is connected to the oscilloscope which serves as a
passband filter for the 2.4 GHz band. The target device is
in close proximity to the horn antenna, so that radio sig-
nals of received 802.11 DATA and transmitted 802.11 ACK
are immediately captured by the oscilloscope, and effects
of signal reflections are minimized. The noise of our high-
end oscilloscope can be regarded as low such that reported
measurements are not affected by any measuring noise but
dominated by the target noise [4].

We use above setup to statistically compare the effec-
tive ToF to the measured time typas(d) as being locally
reported by our firmware on the Broadcom chipset. To com-
pare both distributions, we use the method of the quantile-
quantile (QQ) plot. We collect samples in LOS settings at
d = {1,15,60} m. Results are summarized in Fig. 4. We ob-
serve a linear pattern, which indicates that the noise of the
target station and the data measured locally by the 802.11
firmware have very similar distributions. Hence, the disper-
sion of the local offset has a negligible impact on the noise
of tmrpas(d), and most of the dispersion comes from the tar-
get device. This further demonstrates that our approach to
implement the ToF measurement in the firmware allows to
minimize the impact of the local dispersion of the noise for
LOS links with limited multipath. In the next section, we
look at the impact of richer multipath.

4. ENVIRONMENTAL NOISE

Environmental noise is tricky to deal with. The reasons
are the following:

e multipath reflections introduce a skewness of the sam-
ple distribution which cannot be easily smoothed out
by averaging over a set of biased samples,

e the target noise introduces large offset noise which adds
to the noise created by multipath,

e environmental noise is highly unpredictable as the re-
flected paths are location-specific.



We therefore need an adaptive filter that is calibrated
to the actual multipath characteristics of the experienced
location-specific environment.

Our goal is to design a filter that takes a series of N
consecutive measurements {di,d>,...,dn}, and selects the
p-percentile d(p) of the series that minimizes the estima-
tion error. Intuitively, in absence of multipath, the median
p =50 could fairly represents the distance, while taking the
median in presence of multipath reflections will cause an
over-estimation of the distance due to the added traveled
distance of the signals. By selecting a percentile p < 50 to
estimate the distance, we can therefore counterbalance those
biased values in the estimation process.

4.1 Data Integrity

First, to guarantee data integrity in our evaluation, we
removed sequences of samples which experienced undesired
side effects for a systematic evaluation. In particular, for
statistical relevance of the results, consecutive ToF measure-
ments are supposed to be independent and identically dis-
tributed (i.i.d.). While this assumption holds in most tests,
this condition does not hold in general. We perform cable
tests and they show that the autocorrelation is very low for
lag greater than zero. We observe however that there are
links with high autocorrelation when DATA is transmitted
over the air. This could be explained with the presence of
more than one path between transmitter and receiver, which
may imply that the circuitry continuously jumps between
two states in an attempt to tune the frame synchronization.
We therefore discard those sequences which were subject to
a high absolute lag-one autocorrelation (above 0.2) for the
analysis. Removing measurements with a high autocorrela-
tion is a valid assumption in the real-world as this kind of
test can easily be performed by the AP.

4.2 Estimating Multipath Noise

The second step is to estimate the noise caused by multi-
path reflections on a link. Since we cannot directly measure
the individual multipath components at the signal-level on
off-the-shelf WiFi radios, we propose to use a higher-level
estimator f for this. We explored various options in an ex-
tensive evaluation in one of our testbeds (Testbed I, Fig. 7)
with all links with low lag-one autocorrelation (83% of the
links). As estimators, we considered the first three moments
(median, standard deviation, and skewness) for the ToF as
well as for the Received Signal Strength Indicator (RSSI).
For each of these six estimators, we evaluate two variants,
leading to a total of twelve candidate estimators. In the
first variant, we determine the moments directly on the raw
samples. In the second variant, we attempt to pre-filter obvi-
ous outliers that arise from the device-related measurement
noise prior determining the moments. These outliers are
filtered out applying the Thompson Tau technique, a statis-
tical method for deciding whether to keep or discard samples
based on the expected value and the expected deviation of
the sequence of samples.

We evaluate the precision of these estimators by determin-
ing their correlation to the optimal percentile pop:, defined as
the percentile that provides the minimum absolute distance
estimation error as:

Popr = argmin |d —d(p)] ()

0<p<0.5

unfiltered pre-filtered
median of RSSI 0.62 0.63
standard deviation of RSSI 0.04 0.05
skewness of RSSI 0.23 0.24
median of ToF 0.76 0.76
standard deviation of ToF 0.19 0.21
skewness of ToF 0.20 0.51

Table 1: Absolute value of Pearson correlation coef-
ficient between different moments of the RSSI and
ToF versus the optimal percentile p,,; (0=no corre-
lation, I=maximal correlation).

that is, the a-posteriori optimal percentile for each link given
the true distance of each link in our experiments.

To quantify the correlation between the different moments
and popr, we use the Pearson correlation coefficient on the en-
tire set of links of Testbed I. The Pearson correlation coeffi-
cient is an indicator of the linear correlation of the variables,
where absolute values close to zero indicate a low correlation
and absolute values close to one represent a high linear de-
pendence of two variables. A value close to one thus indicates
that a moment is a good estimator to predict a percentile
that will filter out the multipath noise effectively.

Table 1 shows the resulting correlation coefficient for all
twelve variants. The best correlation is provided by the me-
dian of the ToF, followed by the median of the RSSI and
the skewness of the ToF. All other moments have a correla-
tion coefficient below 0.5 which indicates a low correlation.
Most of the moments profit from pre-filtering to remove the
outliers. In particular, the skewness of the ToF increases
from 0.20 to 0.51 and is therefore considerably better when
pre-filtering the outliers.

One may wonder why the skewness of the ToF has a worse
correlation than the median ToF. Intuitively, the skewness of
the distribution should be a good indicator of the multipath,
given that links with strong reflected (delayed) components
are left-skewed, with p,,; smaller than for right-skewed link.
Our results suggest that the combined device-related noise of
the receiver and the measuring station have a strong negative
effect on the correlation on the skewness. This is reflected
in the pre-filtered version of the skewness which has a con-
siderably better correlation than the unfiltered version. In
contrast, the median of the ToF is much more robust to this
device-related noise and therefore outperforms the skewness.
In addition, it reflects the tendency of having more links af-
fected by multipath for longer distances.

4.3 Filter Design

Motivated by the good correlation of the median ToF and
the optimal percentile, we designed a filter that relies on this
correlation to select an appropriate percentile of the sample
ToF measurements when estimating the distance. The filter
relies on a linear model which is derived from the empirical
distribution of the median ToF versus p,p:. We call it offline
calibration, since it would be usually performed before actual
tests. This distribution on all the 207 links of Testbed I is
shown in the top of Fig. 5. We note that the value of the
optimal percentile is widely distributed between 0 < popr <
50%. Therefore, it does not exist one value of percentile
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Figure 6: Adaptive filter design.

p that it is optimal, but it rather changes from link to link.
We therefore perform a linear regression on these data points
and obtain the linear link-dependent model, as represented
by the continuous line in the figure. Since the correlation
coefficient of the median ToF versus the optimal percentile
is not improved by pre-filtering outliers, we apply this model
on the raw, unfiltered samples. (For the estimator based on
the skewness of ToF we instead use the pre-filtered version).

Since it is desirable to avoid offline calibration, we then run
the same methodology measuring the median ToF between
pairs of APs, which can be performed online (as long as the
distance between APs is known a priori). The results are
shown in the bottom of Fig. 5. We find that the calibration
results in a very similar linear regression.

We illustrate our filter design in Fig. 6. In practice, our
filter works as follows. For a given series of N consecutive
measurements {di, ds,...,dy}, we first determine the median
ToF, d. The median ToF is then used to estimate the amount
of multipath using a linear model. The output of the estima-
tor is the percentile value p. We apply linear interpolation
to the sequence of measurements {ﬁl,ﬁz, .. ,(iN} and select
the p-percentile d(p) of the series that minimizes the error.

5.  EVALUATION METHODOLOGY

This section presents the system and environmental setup
we used to evaluate the performance of our filter.

5.1 System Setup

AP infrastructure. We have build a prototype ToF
system to evaluate its performance in real-world conditions.
Our system is based on COTS APs from Soekris (net5501
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Figure 7: Testbed I. Circles correspond to AP loca-
tions and crosses to target locations.

embedded machine with a 500 MHz AMD Geode LX single
chip processor). The APs are equipped with Broadcom Air-
Force54G 4318 mini PCI type III cards which we operate
with our customized firmware and b43 driver presented in
Section 2.1. As operating system on the APs we use Ubuntu
server 10.04 with a Linux kernel version 2.6.32.60. In or-
der to operate the embedded device as WLAN AP, we use
the software suite hostapd. The APs are connected to the
central localization unit over Gigabit Ethernet.

Target devices. As target devices we use Dell Inspiron
5150 laptops equipped with Broadcom AirForce54G 4318
mini PCI type III cards. The operating system on the lap-
tops is Ubuntu 10.04 with its original Linux kernel version
2.6.32-21.32. The wireless cards are operated in client mode.

5.2 Deployment Scenarios

Testbed deployment. We perform experiments in three
indoor testbeds deployed in different environments. We de-
ploy 10 APs in Testbed I and IIT and 9 APs in Testbed II.
Testbed I and Testbed II are office environments. The en-
vironment of Testbed I is shown in Fig. 7 and it covers a
surface of almost 1000 m*. We use 25 randomly selected lo-
cations (marked with a cross) to test our algorithms. We
conducted tests over two different days, with some position
repeated again with different location of some furniture, and
collected a total of 207 wireless links. Testbed II features 180
links and it covers a smaller space of around 200 m?. The tar-
get station is in 20 different positions. Testbed III has been
deployed at the facilities of the IEEE/ACM IPSN Microsoft
Indoor Localization Competition [1]. The testbed features
200 links and it covers 320 m*. The target device is placed at
20 different positions across two rooms and a hallway.

In all the testbeds there exists a mixture of line-of-sight
and non-line-of-sight wireless links. The testbeds also con-
tain several propagation obstructions, including concrete
walls, tables and glasses. All experiments are conducted
with other active WLAN networks. We operate the three
testbeds on a fixed frequency channel of the 2.4 GHz ISM
band. The PHY automatic selection rate is active, such that
the measurements include probes sent at different rates.

6. EVALUATION RESULTS

This section evaluates the performance of different ranging
estimators in our testbeds.

6.1 Filter Performance

Distance Ranging Accuracy. To test our filter, we
have evaluated its performance on all the links of Testbed
I. For each link, we first compute the distance estimation
error with 20 samples, and then calculate the average error
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using 500 sequences. We consider our filter that uses the me-
dian ToF to estimate the optimal percentile, and two other
versions of the filter that rely on the median of the RSSI
(pre-filtered) and the skewness of the ToF (pre-filtered), as
they provided the second- and third-best correlation coeffi-
cients in Section 4.2. In addition, we also provide the error
for naive approaches such as the mean and median of the
ToF (without any filter).

Figure 8 shows the Empirical Cumulative Distribution Func-
tion (ECDF) of the distance ranging error. Our three new
estimators clearly outperform the mean or the median. The
mean and median have roughly equal estimation error. Their
median error is approximately 4.5 m and the 80-percentile er-
ror is approximately 11.8 m. The error of the filter that uses
the median RSSI slightly outperforms the skewness of the
ToF. This is not surprising since Table 1 shows a higher
correlation coefficients of the filter with median RSSI. The
best performance is achieved with our filter using the median
ToF. In Testbed I, we obtain a median error of 2.4m and a
80-percentile error of 5.3 m.

Comparison with [8]. Fig. 8 also shows that our three
estimators outperform CAESAR, introduced in [8], which
achieves a median error of 4.3 m and a 80-percentile error of
7.4m. Our evaluation of CAESAR is also very consistent to
the one recently presented in the indoor evaluation of [14].

Online calibration. We then compare online versus of-
fline environmental calibration for the filter of median of
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Figure 10: Median and 80-percentile error of our
estimator that filters the noise based on the median
of ToF'. Results are provided for different number of
samples.

ToF (similar results are achieved with our other filters). As
reported in Fig. 8, the online calibration achieves similar re-
sults with respect to the offline tests, with median error of
2.6m and a 80-percentile error of 5.4m. Thus, the environ-
mental calibration can be executed online without significant
performance loss.

Robustness to different environments/testbeds.
Fig. 9 shows the median and 80-percentile of the distance
error for the three different testbeds using sequences of 20
samples. As shown in the x-label of the figure, we measure
a high Pearson correlation coefficient between the median of
ToF and the optimal percentile (0.76 — 0.89). The median
distance error is in the range 1.7 -2.4 m and the 80-percentile
error is in the range 3.7 —-5.8 m. Concluding, the estimator is
robust across different environments.

Impact of Number of ToF Samples. A further pa-
rameter we evaluate with regard to our filter is the number
of ToF measurement samples N that are used for the esti-
mation of the distance. Figure 10 shows the error for our
filter that relies on the median of the ToF as a function of
the number of samples. It is remarkable that the error is sta-
ble with five or more samples for the median of the distance
error, and with ten or more samples for the 80-percentile of
the distance error.

7. CONCLUSION

We have designed a cost-effective ranging technique such
that it does not require any special hardware, special anten-
nas, or software-defined radio architectures. Our solution
can be deployed as a software upgrade to current WLAN
infrastructures. While our best performing estimator may
be a bit counter-intuitive, we have shown its robust perfor-
mance in a variety of different setups and testbeds. Since
ToF-based WLAN localization is still at its infancy, we be-
lieve that further research in this area might help to even
further improve the accuracy of our results in the future.
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