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Abstract—Offloading traffic through opportunistic communica-
tions has been recently proposed as a way to relieve the current
overload of cellular networks. Opportunistic communication can
occur when mobile device users are (temporarily) in each other’s
proximity, such that the devices can establish a local peer-to-peer
connection (e.g., via WLAN or Bluetooth). Since opportunistic
communication is based on the spontaneous mobility of the par-
ticipants, it is inherently unreliable. This poses a serious challenge
to the design of any cellular offloading solutions, that must meet
the applications’ requirements. In this paper, we address this chal-
lenge from an optimization analysis perspective, in contrast to the
existing heuristic solutions. We first model the dissemination of
content (injected through the cellular interface) in an opportunis-
tic network with heterogeneous node mobility. Then, based on this
model, we derive the optimal content injection strategy, which
minimizes the load of the cellular network while meeting the ap-
plications’ constraints. Finally, we propose an adaptive algorithm
based on control theory that implements this optimal strategy
without requiring any data on the mobility patterns or the mo-
bile nodes’ contact rates. The proposed approach is extensively
evaluated with both a heterogeneous mobility model as well as re-
al-world contact traces, showing that it substantially outperforms
previous approaches proposed in the literature.

Index Terms—Cellular traffic offloading, content dissemination,
D2D communication, epidemic dissemination, opportunistic com-
munication, optimization analysis, control theory.

I. INTRODUCTION

FOLLOWING the huge popularization of smartphones and
the ensuing explosion of mobile data traffic [1], cellu-

lar networks are currently overloaded and this is foreseen to
worsen in the near future [2]. A recent promising approach to
alleviate this problem is to offload cellular traffic through op-

Manuscript received May 20, 2013; revised November 15, 2013; accepted
May 17, 2015. Date of publication July 2, 2015; date of current version
December 15, 2015. This work has been sponsored by the HyCloud project,
supported by Microsoft Innovation Cluster for Embedded Software (ICES), and
by the EU H2020-ICT-2014-2 Flex5Gware project, no. 671563.

V. Sciancalepore is with IMDEA Networks Institute, Madrid 28918, Spain,
with University Carlos III of Madrid, Madrid 28911, Spain, and also with
Politecnico di Milano, Milano 28911, Italy (e-mail: vincenzo.sciancalepore@
imdea.org).

D. Giustiniano is with IMDEA Networks Institute, Madrid 28911, Spain
(e-mail: domenico.giustiniano@imdea.org).

A. Banchs is with IMDEA Networks Institute, Madrid 28918, Spain, and
also with University Carlos III of Madrid, Madrid 28911, Spain (e-mail: albert.
banchs@imdea.org).

A. Hossmann-Picu is with Swisscom, Berne 3050, Switzerland (e-mail:
hossmann@iam.unibe.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2015.2452472

portunistic communications [3]. The key idea is to inject mobile
application content to a small subset of the interested users
through the cellular network and let these users opportunisti-
cally spread the content to others interested upon meeting them.
By exploiting opportunistic communications in this way, such
an approach has the potential to substantially relieve the load
of the cellular infrastructure. Among other mobile applications,
this can be used for news [4], road traffic updates [5], social data
[6] or streaming content [7]. Indeed, as shown by our perfor-
mance evaluation results, the load of the cellular network can be
reduced between 50% and 95%, depending on the application.

Opportunistic networking exploits the daily mobility of
users, which enables intermittent contacts whenever two mobile
devices are in each other’s proximity. These contacts are used
to transport data through the opportunistic network, which may
introduce substantial delays. However, the type of content con-
cerned by cellular offloading may not always be entirely delay-
tolerant. In many applications, it is indeed critical that the
content reach all users before a given deadline, lest it lose its
relevance or its usability. Therefore, the design of opportunistic-
based cellular offloading techniques faces serious challenges
from the intermittent availability of transmission opportunities
and the high dynamics of the mobile contacts. In order to find
the best trade-off between the load of the cellular network
and the delay until the content reaches the interested users,
any opportunistic-based offloading design must answer crucial
questions such as, how many copies of the content to inject, to
which users and when.

While a number of techniques have been proposed in the
literature to offload cellular traffic through opportunistic com-
munications, previous approaches are either based on heuristics
(and hence do not ensure that the load of the cellular network is
minimized) [5]–[7] or fail to provide delay guarantees [4], [7].
In contrast to the above approaches, in this paper, we propose
the HYPE (HYbrid oPportunistic and cEllular) technique,
which minimizes the load of the cellular network while meet-
ing the constraint in terms of delay guarantees. To our best
knowledge, we are the first to provide such features. The key
contributions of our work are as follows:

1) Building on the foundations of epidemic analysis [8], we
propose a model to understand the fundamental trade-offs
and evaluate the performance of a hybrid opportunistic
and cellular communication approach. Our model reveals
that content tends to disseminate faster through oppor-
tunistic contacts when a sufficient, but not excessive,
number of nodes have already received the content; in
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contrast, dissemination is slower when either few users
have the content or few users are missing it.

2) Based on our model, we derive the optimal strategy for
injecting content through the cellular network. In line
with our previous findings, this strategy uses the cellular
network when low speed of opportunistic propagation is
statistically expected, and lets the opportunistic network
spread the content the rest of the time.

3) We design an adaptive algorithm, based on control theory,
that implements the optimal strategy for injecting content
through the cellular network. The key strengths of this al-
gorithm over previous approaches are that it adapts to the
current network conditions without monitoring the nodes’
mobility and that it incurs very low signaling overhead
and complexity. Both features are essential features for a
practical implementation.

The rest of the paper is structured as follows. After thor-
oughly reviewing related work in Section II, we outline the
basic design guidelines of our approach and theoretically an-
alyze its performance in Section III. Based on this analysis, in
Section IV, we then derive the optimal strategy and present our
adaptive algorithm, which implements this optimal strategy. The
algorithm’s performance is extensively evaluated in Section V,
using mobility models as well as experimental contact traces.
Finally, Section VI closes the paper with some final remarks.

II. RELATED WORK

The problem of the unsustainable increase in cellular net-
work traffic and how to offload some of it has become more
and more popular. Two types of solutions can be distinguished,
on the basis of the outlet chosen for part of the cellular traffic:
(i) offloading through additional (new or existing) infrastruc-
ture, and (ii) offloading through ad hoc communication. Our
proposal, HYPE, falls into the second category.

In the first category, many solutions [9], [10] are aiming to
exploit the relatively large number of existing WLAN access
points, as well as cellular diversity. A different approach, based
on new infrastructure, is introduced in [11], in the context
of vehicular networks. In that paper, the authors advocate the
deployment of fixed roadside infrastructure units and study
the performance of the system in offloading traffic information
from the cellular network.

In the second category, along with our study, an increasing
body of work is investigating the use of infrastructure-free op-
portunistic networking as a complement for the cellular in-
frastructure. In particular, the studies in [4]–[7], [12] propose
solutions based on this idea.

In [4], the authors propose to push updates of dynamic con-
tent from the infrastructure to subscribers, which then dis-
seminate the content epidemically. The distribution of content
updates over a mobile social network is shown to be scalable,
and different rate allocation schemes are investigated to maxi-
mize the data dissemination speed. A substantial difference be-
tween this work and HYPE is that [4] does not minimize the
load incurred in the cellular network and does not provide any
delay guarantees, which are central objectives in our approach.
Moreover, the solution introduced in [4] results in higher re-

source consumption for the “most central” users (i.e., highest
contact rates) and/or the “most social” users.

Han et al. investigate, in [6], which initial subset of users
(who receive the content through the cellular) will lead to the
greatest infection ratio. A heuristic algorithm is proposed, that
uses the history of user mobility of the previous day to identify
a target set of users for the cellular deliveries. HYPE differs
significantly from this, in the following aspects: (i) the solution
in [6] is heuristic and thus does not guarantee optimal perfor-
mance, (ii) it requires to know the mobility patterns of all users,
which may not be realistic in most scenarios, and (iii) it only
investigates which users to choose, but not how many of them.

In [7], an architecture is implemented to stream video content
to a group of smartphones users within proximity of each
other, using both the cellular infrastructure and WLAN ad-hoc
communication. The decision of who will download the content
from the cellular network is based on the phones’ download
rates. In contrast to our work, the focus of [7] is on the imple-
mentation rather than the model and the algorithm. Indeed,
the algorithm proposed is a simple heuristic, which does not
guarantee optimal performance.

Another study where opportunistic networking is used to of-
fload the mobile infrastructure is [12]. Here, some chosen users,
named “helpers,” participate in the offloading, and incentives
for these users are provided by using a micro-payment scheme.
Alternatively, the operator can offer the participants a reduced
cost for the service or better quality of service. Thus, the focus
of [12] is on incentives, which is out of the scope of our work.

Most similar to HYPE is the Push-and-Track solution, pre-
sented in [5]. There, a subset of users initially receive content
from a content provider and subsequently propagate it epidemi-
cally. Upon reception of the content, every node sends an ack-
nowledgment to the provider, which may decide to re-inject
extra copies to other users. Upon reaching the content deadline,
the system enters into a “panic zone” and pushes the content to
all nodes that have not yet received it. The most prominent dif-
ference between this approach and ours is that Push-and-Track
relies on a heuristic to choose when to feed more content copies
into the opportunistic network, which does not guarantee that
the load on the cellular network is minimized. In contrast, we
build on analytical results to guarantee that performance is opti-
mal. An additional drawback of Push-and-Track is that it in-
curs a very high signaling overhead, which compromises the
scalability with the number of subscribed users. Results in
Section V confirm that our theory-driven algorithm outperforms
the heuristics proposed in [5] both in terms of cellular load and
of signaling overhead.

Finally, from a different perspective, HYPE is also related
to content dissemination solutions in purely opportunistic net-
works [13], [14]. However, most of these studies focus on
finding the best ways to collaborate or contribute to the dis-
semination, under various constraints (e.g., limited “public”
buffer space). Evaluation is usually based on the delay incurred
to obtain desired content or the equivalent metric of average
content freshness over time. In contrast, our metric is the load
incurred in the cellular network. However, when developing our
initial model, we do use a similar modeling method as in purely
opportunistic dissemination (e.g., [13], [15]).
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Like all the previous works on offloading cellular net-
works through opportunistic communications [4]–[6], with our
approach all the transmissions over the cellular network are uni-
cast. There are several key reasons that limit the usage of mul-
ticast messages in a cellular network. First, multicast cannot be
easily combined with opportunistic transmissions, as this would
require that the Content Server is aware of the cell of each node
and can dynamically select the subset of nodes at each cell
that receives the multicast message, which is not possible with
current cellular multicast approaches. Second, in urban sce-
narios users will likely be associated to different base stations
(there are hundreds/thousands of them in the city, each covering
some sector, and in dense urban areas femtocells have started
to be deployed). Thus, there is a low probability that users
subscribed to a specific content are associated to the same cells
at the same time, and hence multicast may collapse to unicast.
Finally, transmissions with multicast would occur at the lowest
rate to preserve users in the edge of the cell, which degrades the
resulting performance.

III. THE HYPE APPROACH

In this section, we present the basic design guidelines of the
HYPE (HYbrid oPportunistic and cEllular) approach. HYPE is
a hybrid cellular and opportunistic communications approach
that delivers content to a set of users by (i) sending the content
through the cellular network to an initial subset of the users
(which we will call seed nodes), and (ii) letting these initial
users or seed nodes share the content opportunistically with the
other nodes. We aim at designing HYPE so as to combine the
cellular and opportunistic communication paradigms in a way
that retains the key strengths of each paradigm, while overcom-
ing their drawbacks.

HYPE consists of two main building blocks: (i) the Content
Server, and (ii) the Mobile Applications. The Content Server
runs inside the network infrastructure, while the Mobile Appli-
cations run in mobile devices that are equipped with cellular
connectivity, as well as able to directly communicate with each
other via short range connections (e.g., via WLAN or Blue-
tooth). The Content Server monitors the Mobile Applications
and, based on the feedback received from them, delivers the
content through the cellular network to a selected subset of Mo-
bile Applications (the seed nodes). When two mobile devices
are within transmission range of each other, the corresponding
Mobile Applications opportunistically exchange the content by
using local (short-range) communications.

A. Objectives

The fundamental challenge of the HYPE approach is the
design of the algorithm that decides which mobile devices
and when they should receive the content through the cellular
network. The rest of this paper is devoted to the design of such
an algorithm. The key objectives in the design are:

(i) Maximum Traffic Offload: Our fundamental objective is
to maximize the traffic offloaded and thus reduce the load
of the cellular network as much as possible. This is ben-
eficial both for the operators (who may otherwise need to

upgrade their network, if the cellular infrastructure is not
capable of coping with current demand), as well as for the
users (who must pay for cellular usage, either directly or
by seeing their data rate reduced).

(ii) Guaranteed delay: Most types of content have an expira-
tion time, arising either from the content’s usefulness to
the user (e.g., road traffic information), its validity after an
update (e.g., daily news) or its play-out time (e.g., stream-
ing). Therefore, a key requirement for our approach is
that the content reaches all the interested users before its
deadline.

(iii) Fairness among users: In order to make sure that all
users benefit from HYPE, it is important to guarantee a
good level of fairness both in terms of cellular usage (for
which users have to pay), as well as in terms of oppor-
tunistic communications (which may increase the energy
consumption of the device).1

(iv) Reduced signaling overhead: The signaling overhead be-
tween the Content Server and the Mobile Applications
needs to be low. This is important for two reasons: first,
to ensure that HYPE scales with the number of mobile
devices (otherwise the signaling traffic would overload
the cellular network); second, to avoid using the cellu-
lar interface for small control packets (which is highly
energy inefficient due to the significant tail consumption
after a cellular transmission [16]).

The above objectives involve some trade-offs, making it very
challenging to satisfy all of them simultaneously. For instance,
to maximize the traffic offload, we may consider a greedy ap-
proach, where the Content Server sends the content to users
with the highest contact rates; however this would (i) deteriorate
the fairness among users, and (ii) increase the signaling over-
head to gather data on user mobility patterns. Another approach
may instead minimize the signaling overhead by injecting con-
tent as long as there is enough bandwidth available, avoiding
thus any signaling; however, this will not maximize the traffic
offload. In the following, we set the basic design guidelines of
an approach that satisfies all these objectives.

B. Basic Design Guidelines

In order to satisfy the above objectives, a key decision of
HYPE is how to deliver a certain piece of content (hereafter
referred to as data chunk) through the cellular network. In parti-
cular, this decision involves the selection of the nodes to which
the data chunk is delivered via cellular, as well as the times
when to perform these deliveries.

In HYPE, a data chunk is initially delivered to one or more
users through the cellular network; additional copies may be
injected later if needed. The decision of when to inject another
copy of the chunk is driven by the number of users that have
already received it. As long as the deadline has not expired, any
user with a copy of the chunk will opportunistically transmit it
to all the users it meets, that do not have the chunk. Finally,

1Indeed, an important drawback of certain existing solutions is that they tend
to over-exploit the users with high contact rates [4], [6], thus discouraging the
participation of such users.
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upon reaching the deadline of the content, the remaining users
that have not yet received the chunk, download it from the
cellular network2; this ensures that the delay guarantees are
met and thus we satisfy objective (ii) from Section III-A.

In order to provide a good level of fairness among users,
which is objective (iii), HYPE selects each of the seed nodes
uniformly at random. Over the long term, this ensures that, on
the one hand, all users have the same load in terms of cellular
usage and, on the other hand, they also share fairly well the load
incurred in opportunistic communications. This is confirmed by
the simulation results presented in Section V, which show that
HYPE provides a good level of fairness while paying a small
price in terms of performance.3

The approach sketched above meets objectives (ii) and (iii).
In the following, we first present a model for the opportunistic
dissemination of content injected by a cellular network. Based
on this model, in Section IV we derive the optimal strategy for
the delivery of a single data chunk, that minimizes the load of
the cellular network fulfilling objective (i), and then we design
an algorithm to implement this strategy, that incurs very low
signaling overhead thus also satisfying objective (iv).

C. Model

In order to derive the optimal strategy, with the above ap-
proach, for the delivery of data chunks through the cellular
network, we need to determine:

• The total number of copies of the data chunk to be
delivered by the cellular network. This is not trivial: for
example, an overly conservative approach, that delivers
too few copies before the deadline, may have the side-
effect of overloading the cellular network with a large
number of copies when the deadline expires.

• The optimal instants for their delivery. The decision of
when to deliver a copy of a data chunk through the cel-
lular network is based on the current status of the net-
work, which is given by the number of users that already
have the chunk.

In the following, we model the opportunistic dissemination
of content injected by a cellular network and analyze the load
of the cellular network as a function of the strategy followed.
Then, based on this analysis, in Section IV we obtain the
optimal strategy, that minimizes the load of the cellular network
for a given content deadline.

Let N be a set of mobile nodes subscribed to the same con-
tent, with N = |N | the size of this set (total number of nodes).
All nodes have access to the cellular network. Any two nodes
also have the ability to setup pairwise bi-directional wireless
links, when they are in each other’s communication range (in
contact). Thus, opportunistic communication happens via the
store-carry-forward method, through the sequences of intermit-
tent contacts established by node mobility.

2An added advantage of this architecture is that the mobile nodes only need
to keep the data chunks for forwarding until their deadline and no longer. The
burden on the mobile nodes’ buffers is thus kept very low.

3This is also supported by the results of [5], which show that the difference
in terms of performance between the random selection and other strategies is
very small.

Fig. 1. Markov chain for HYPE communication, assuming homogeneous
node mobility. Transitions can be caused either by (i) a contact between two
nodes, or (ii) injection of the chunk to one node through the cellular network
(instantaneous transition, represented with ∞ rate in the figure).

At time 0, a data chunk is injected in the (opportunistic)
network, i.e., copies of the chunk are pushed via the cellular
interface to a small subset of N , the seed nodes. Throughout
the model description, we follow the epidemic dissemination of
this chunk of content. We denote by M(t) the number of mobile
nodes holding the chunk at time t (we refer to such nodes as
“infected”). The delivery deadline assigned to a data chunk
is given by Tc (its value depends on the mobile application’s
requirements).

1) Opportunistic Communication: In the opportunistic phase
of HYPE, data are exchanged only upon contacts in the network
N , therefore a mobility model based on contact patterns is
sufficient for our analysis.

We assume every pair of nodes (x, y) in the network N meets
independently of other pairs, at exponentially distributed time
intervals4 with rate βxy � 0. Then, the opportunistic networkN
can be represented as a weighted contact graph using the N × N
matrix B = {βxy}. We further assume that the inter-contact rates
βxy are samples of a generic probability distribution F(β) :
(0,∞) → [0, 1] with known expectation μβ (various distribu-
tion types for F(β) and their effects on aggregated inter-contact
times are investigated in [20]). Additionally, we assume that the
duration of a contact is negligible in comparison to the time
between two consecutive contacts, and that the transmission
of a single chunk is instantaneous in both the cellular and the
opportunistic network.

The assumptions of exponential inter-contact and negligi-
ble contact duration are the norm in analytical work dealing
with opportunistic networks [21]–[23]. Studies based on looser
assumptions (generic inter-contact models, non-zero contact du-
ration) have, so far, only resulted in broad, qualitative conclu-
sions (e.g., infinite vs. finite delay), while we aim at obtaining
more concrete, quantitative results. In addition, all our simula-
tions feature non-zero contact duration and some of them also
have non-exponential inter-contact times, thus testing the appli-
cability of our results outside the domain of these assumptions.

Epidemic dissemination in opportunistic networks is typi-
cally described with a pure-birth Markov chain, similar to the
one in Fig. 1 (slightly adapted from, e.g., [21]). This type of
chain only models the number of copies of a chunk in the net-
work N at any point in time, regardless of the specific nodes
carrying those copies. This is only possible when considering
node mobility to be entirely homogeneous (i.e., all node pairs

4Though all pairwise inter-contact rates may not always be exactly exponen-
tial (preliminary studies of traces [17] suggested that this is true for subsets of
node pairs only), the most in-depth and recent studies [18], [19] conclude that
inter-contact time intervals do feature an exponential tail. This is supported by
the recent results of Passarella et al. [20], which show that the non-exponential
aggregated inter-contacts discovered in the preliminary trace studies [17] can,
in fact, be the result of exponentially distributed pairwise inter-contacts with
different rates.
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Fig. 2. Markov chain for epidemic spreading, assuming heterogeneous node
mobility. HYPE specific transitions (i.e., chunk injection by cellular) are left
out for clarity. This Markov chain is very complex and intractable for large
scenarios; in Theorem 1 we can then reduce it to an equivalent Markov chain
that is much simpler and for which we can derive a closed-form solution.

meet at a unique rate: βxy = λ for all x, y ∈ N ), which allows
all nodes to be treated as equivalent.

However, as stated in the beginning of this subsection, we
consider node mobility to be heterogeneous, with node pairs
meeting at different rates βxy with x, y ∈ N . In this case, not
only the number of spread copies must be modeled, but also the
specific nodes carrying those copies. This results in more com-
plex Markov chains, as illustrated in Fig. 2 for a 4-node network
N = {a, b, c, d}.

Transition rates in Markov chains like the one shown in
Fig. 2 depend on the nodes “infected” in each of the departure
and the arriving states. For example, in Fig. 2, the transition
between state a and state ab can happen if node a meets node b.
Therefore, the transition time between these two states is expo-
nential with rate given by the meeting rate of the (a, b) node
pair, βab. Similarly, the transition between state ab and state abc
can happen if node a meets node c, or if node b meets node c
(whichever meeting happens first). Thus, the transition time for
this transition is the minimum of two exponential variables with
rates βac and βbc. Since inter-contact times are exponential, this
minimum is also exponential with rate βac + βbc, as shown in
Fig. 2.

2) Cellular Communication: The decision to deliver a copy
of the chunk through the cellular network is based on the current
dissemination level, i.e., the number of nodes that already have
the chunk. We say that the HYPE process or its associated
Markov chain (similar to Fig. 2) is at level i, when i mobile
nodes are infected, i.e., M(t) = i. Each level i corresponds to a
set of

(N
i

)
states {Ki

1, Ki
2, . . . , Ki

(N
i )

} in the Markov chain. For

instance, in our 4-node network from Fig. 2, the HYPE process
is at level 3, when the chain is in any of the states K3

1 = abc,
K3

2 = abd, K3
3 = acd or K3

4 = bcd.
The strategy to transmit copies of the chunk over the cellular

network is given by the levels at which we inject a copy. We
denote these levels by C = {c1, c2, . . . , cd}: as soon as we reach
one of these levels ci ∈ C before the deadline Tc, a copy of the
chunk is sent to a randomly chosen node. With this, the transi-
tions in the HYPE Markov chain can be caused either by: (i) a
contact between two nodes (one infected, the other uninfected),

which occurs at rates indicated in the previous subsection, or
(ii) the injection of the chunk to one node through the cellu-
lar network. The latter corresponds to an instantaneous transi-
tion (since the chain instantly “jumps” to a state of the next
dissemination level), and is represented in Fig. 1 with ∞
rate.5 Finally, upon reaching the deadline Tc, the chunk is sent
through the cellular network to those nodes that do not have the
content by that time.

D. Analysis

Based on the above model, in the following, we analyze the
load of the cellular network (which is the metric that we want
to minimize) as a function of the strategy followed to inject
content (which is given by C = {c1, c2, . . . , cd}). The cellular
network load corresponds to the number of copies delivered
through the cellular network, which we denote by D. Let pi(t) =
P[M(t) = i] denote the probability of being at level i at time t.
Then, D is given by:

D =
N∑

i=1

(
di + d∗

i

)
pi(Tc) (1)

where di is the number of deliveries through the cellular net-
work that take place until level i is reached (di = |{1, 2, . . . ,

i} ∩ C|) and d∗
i is the number of copies delivered upon reaching

the deadline Tc, if it expires at level i (d∗
i = N − i).

In order to compute pi(Tc), we first analyze the case C =
{c1},6 i.e., when we only inject one copy of the data chunk at
the beginning and do not inject any other until we reach the
deadline. Let pc1

i (Tc) denote the probability that, in this case,
the system is at level i at time Tc. In order to compute pci

i (Tc),
we model the transient solution of our Markov chain as shown
in the following theorem. (The formal proofs of the theorems
are provided in the Appendix.)

Theorem 1: According to the HYPE Markov chain for het-
erogeneous mobility (similar to Fig. 2), the process {M(t), t≥0}
is described by the following system of differential equations:⎧⎪⎨

⎪⎩
d
dt p

c1
1 (t) = −λ1pc1

1 (t), i = 1
d
dt p

c1
i (t) = −λip

c1
i (t) + λi−1pc1

i−1(t), 1 < i < N
d
dt p

c1
N (t) = λN−1pc1

N−1(t), i = N

(2)

where λi = i(N − i)μβ . (Recall that μβ is the known expec-
tation of the generic probability distribution F(β) : (0,∞) →
[0, 1], from which the inter-contact rates describing our net-
work are drawn: {βxy} = B.)

Theorem 1 has effectively reduced our complicated Markov
chain for heterogeneous mobility back to a simpler Markov
chain, like the one in Fig. 1 (the λ factor being replaced by μβ ).
In the simpler chain, each state represents a level of chunk dis-
semination (i.e., number of nodes holding a copy of the chunk).
This is possible, as shown in the proof, thanks to the fact that
our heterogeneous contact rates βxy are all drawn from the same

5Note that, for clarity, the Markov chain of Fig. 2 does not model transitions
caused by chunk injection through the cellular network. This type of transition
would be the same as in Fig. 1 (i.e., ∞ rate).

6Note that c1 must necessarily be equal to 0.
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distribution, F(β) : (0,∞) → [0, 1], which means that all the
states of a certain dissemination level i: {Ki

1, Ki
2, . . . , Ki

(N
i )

}
are, in fact, statistically equivalent.

Applying the Laplace transform to the above differential
equations, and taking into account that pc1

i (0) = δi1, leads to⎧⎪⎨
⎪⎩

sPc1
1 (s) = −λ1Pc1

1 (s) + 1, i = 1

sPc1
i (s) = −λiP

c1
i (s) + λi−1Pc1

i−1(s), 1 < i < N

sPc1
N (s) = λN−1Pc1

N−1(s), i = N

(3)

from which ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pc1
i (s) = 1

s+λi

i−1∏
j=1

λj
s+λj

, i < N

Pc1
N (s) = 1

s

N−1∏
j=1

λj
s+λj

, i = N
(4)

In case we deliver the data chunk through the cellular net-
work at the levels C = {c1, c2, . . . , cd}, then the transitions
corresponding to those levels are instantaneous, and the Laplace
transforms of the probabilities Pi(s) are computed as:

Pi(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
s+λi

∏
j∈Si−1

λj
s+λj

, i < N, i /∈ C

0, i < N, i ∈ C
1
s

∏
j∈SN−1

λj
s+λj

, i = N

(5)

where Si−1 is the set of levels up to level i − 1, without includ-
ing those that belong to set C, i.e., Si−1 = {1, 2, . . . , i − 1} \
({1, 2, . . . , i − 1} ∩ C). For the levels i ∈ C, we simply have
PC

i (s) = 0, since we will never be at these levels.
From Eq. (5), we can obtain a closed-form expression for

the probabilities pi(t) as follows. The polynomial Pi(s) is
characterized by first and second order poles which have all
negative real values. Let {s = −λn} be the poles of Pi(s). Then,
pi(t) for i < N, i /∈ C is computed as:

pi(t) =
⎛
⎝ ∏

j∈Si−1

λj

⎞
⎠ ∑

{s=−λn}
Res

(
est∏

j∈Si
(λj + s)

)
(6)

where Res indicates the residue, which is given by:

Res
s=−λn

⎛
⎜⎝ est∏

j∈Si

(λj + s)

⎞
⎟⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−λnt∏
j∈Si
j �=n

(λj−λn)
, −λnis a 1st order pole

e−λnt

⎡
⎢⎢⎣t− ∑

j∈Si
λj �=λn

1
(λj−λn)

⎤
⎥⎥⎦

∏
j∈Si

λj �=λn

(λj−λn)
, −λnis a 2nd order pole

Additionally, for i < N, i ∈ C we have pi(t) = 0, and for i =
N, pN(t) = 1 − ∑N−1

i=1 pk(t).

By evaluating pi(t) at time t = Tc and applying Eq. (1), we
can compute the average number of deliveries over the cellular
network, D.

IV. OPTIMAL STRATEGY AND ADAPTIVE ALGORITHM

In this section, we first leverage on the above model to deter-
mine the optimal strategy for the delivery of data chunk, and
then we design an adaptive algorithm to implement this strategy.

A. Optimal Strategy Analysis

Our goal is to find the best strategy C = {c1, c2, . . . , cd} for
injecting chunk copies over the cellular network, that minimizes
the total load D of the cellular network while meeting the
content’s deadline Tc. To solve this optimization problem, we
proceed along the following two steps:

1) We show that the optimal strategy is to deliver the content
through the cellular network only at the beginning and at
the end of the data chunk’s period, and never in-between.
The data chunk’s period is defined as the interval between
t = 0 (when we first start distributing the content) and t =
Tc (when the content’s deadline expires).

2) We obtain the optimal number of copies of the chunk to
be delivered at the beginning of the period such that the
average load of the cellular network, D, is minimized.

The following theorem addresses the first step.
Theorem 2: In the optimal strategy, the data chunk is deliv-

ered through the cellular network to d seed nodes at time t = 0,
and to the nodes that do not have the content by the deadline at
time t = Tc.

According to Theorem 2, the optimal strategy is to: (i) deliver
a number of copies through the cellular network at the begin-
ning of the period, (ii) wait until the deadline without delivering
any additional copy, and (iii) deliver a copy of the chunk to the
mobile nodes missing the content at the end of the period.

The intuition behind this result is as follows. When few users
have the content, information spreads slowly, since it is unlikely
that a meeting between two nodes involves one of the few that
have already the content. Similarly, information spreads slowly
when many users have the content, as a meeting involving a
node that does not yet have the content is improbable.

The strategy given by Theorem 2 avoids the above situations
by delivering a number of chunk copies through cellular com-
munication at the beginning (when few users have the content)
and at the end (where few users miss the content). As a result,
the strategy lets the content disseminate through opportunistic
communication when the expected speed of dissemination is
higher, which allows to minimize the average load of the
cellular network.

The second challenge in deriving the optimal strategy is to
compute the optimal number of copies of the chunk to be
delivered at the beginning of the period, which we denote by d.
To that end, the following proposition defines the notion of gain
and computes it.

Proposition 1: Let us define Gd as the gain resulting from
sending the (d + 1)th chunk of chunk copy at the beginning
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of the period (i.e., Gd = Dd − Dd+1, where Dd+1 and Dd are
the values of D when we deliver d + 1 and d copies at the be-
ginning, respectively). Then, Gd can be computed from the
following equation:

Gd =
N−1∑
j=d

λj

λd
pd

j (Tc) − 1, (7)

Building on the above notion of Gd, the following theorem
provides the optimal point of operation:

Theorem 3: The optimal value of d is the one that satisfies
Gd = 0.

The rationale behind the above theorem is as follows. When
Gd > 0, by sending one additional copy at the beginning, we
save more than one copy at the end of the period and hence ob-
tain a gain. Conversely, when Gd < 0, we do not benefit from
increasing d. The proof shows that Gd is a strictly decreasing
function of d, which implies that, to find the optimal point of
operation, we need to increase d as long as Gd > 0 and stop
when we reach Gd = 0 (after this point, Gd < 0 and further
increasing d yields a loss).

B. Adaptive Algorithm for Optimal Delivery

While the previous section addressed the delivery of a single
data chunk, in this section we focus on the delivery of the entire
content, e.g., a flow of road traffic updates, news feeds or a
streaming sequence. We consider that the distribution of content
in mobile applications is typically performed by independently
delivering different pieces of content in a sequence of data
chunks. For instance, a streaming content of 800 MB may be
divided into a sequence of chunks of 1 MB. When delivering
chunks in sequence, we need to adapt to the system dynamics.
For instance, inter-contact time statistics may vary depending
on the time of the day [24], which means that the optimal d
value obtained by Theorem 3 needs to be adapted accordingly.
Similarly, the number of mobile nodes N subscribed to the con-
tent may change with time, e.g., based on the content popularity.

To address the above issues, we design an adaptive algorithm
based on control theory, that adjusts the number of chunk copies
d delivered at the beginning of each period to the behavior
observed in previous rounds (hereafter we refer to the sequence
of periods as rounds). For instance, in the example above we
would have a total of 800 rounds. In the following, we first
present the basic design guidelines of our adaptive algorithm.
Building on these guidelines, we then design our system based
on control theory. Finally, we conduct an analysis of the system
to guarantee its stability and ensure good response times.

C. Adaptive Algorithm Basics

In order to devise an adaptive algorithm that drives the sys-
tem to optimality, we first need to identify which variable we
should monitor and what value this variable should take in
optimal operation. To do this, we build on the results of the pre-
vious section to design an algorithm that: (i) monitors how
many additional infected nodes we would have at the end of
a round, if we injected one extra copy at the beginning of that
round; and (ii) drives the system to optimality by increasing

Fig. 3. Example of chunk dissemination in optimal operation. Node a and b
receive a copy of the chunk from the Content Server (d = 2). At the end of the
round, there are two nodes with a single copy ID, that is, s = 2.

or decreasing d depending on whether this number is above or
below its optimal value.

To efficiently monitor the numberofadditional infected nodes,
we apply the following reasoning. According to Theorem 3,
in optimal operation, one extra delivery at the beginning of a
round leads to one additional infected node at the end of that
round. If we focus on a single copy of the chunk delivered
over the cellular network and consider it as the extra delivery,
the nodes that would receive the content due to this one extra
delivery are those that received this specific copy and could not
have received the chunk from any other source. Since this holds
for each of the d copies delivered over the cellular network, in
optimal operation there are on average a total of d nodes at the
end of the round, which received the chunk from one source and
could not have received it from any other source. Our algorithm
focuses on this aggregate behavior of the d deliveries rather than
on a single copy, as this provides more accurate information
about the epidemic dissemination of the data chunk.

Based on this, each round of the adaptive algorithm proceeds
as follows (see Fig. 3 for an example):

1) Initially, copies of the data chunk are transmitted to a
random set of d seed nodes over the cellular network.
Each of the copies is marked with a different ID that
uniquely identifies the source of the copy.

2) When a node that does not have the chunk receives it from
another node opportunistically, it records the ID of the
copy received.

3) If two nodes that have copies with different IDs meet,
they mark this event, to record that they could have
potentially received the chunk from different sources.7

We say that such nodes have “several copy IDs,” while
those that keep only one ID have a “single copy ID.”

4) If a node who does not have any copy or has a single copy
ID meets with another node who recorded the “several
copy IDs” event, the first node also marks its copy with
the “several copy IDs” mark.

5) At the end of the round, the nodes whose chunk comes
from a single source (i.e., no “several copy IDs” mark)
send a signal to the Content Server.

7Note that, for a node with “several copy IDs,” we only mark the event and
do not keep the IDs of the copies, since (i) we are only interested in signaling
the number of nodes with a single copy ID, and (ii) this leads to more efficient
operation, requiring fewer communications and less protocol overhead.
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Fig. 4. Our system is composed by two modules: the controlled system H(z),
that models the behavior of HYPE, and the PI controller C(z), that drives the
controlled system to the optimal point of operation.

By running the above algorithm, we count the number of
nodes whose copy of the chunk comes from a single source
(i.e., who have a single copy ID at the end of the round), which
we denote by s. As argued at the beginning of this section, in
optimal operation this number is equal to the number of seed
nodes. This implies that, at this operating point, the number
of data chunks injected through the cellular network at the
beginning of the round is equal, in expectation, to the number
of signals received at the end of the round, i.e., s = d.

A key feature of the above algorithm design is that it does not
require gathering any complex statistics on the network, such
as the behavior of the mobile nodes, their mobility or social
patterns, or their contact rates. Instead, we just need to keep
track of the number of chunks injected at the beginning of each
round and the signals received at the end, and this is sufficient
to drive the system to optimal operation. As a result, the
proposed algorithm involves very reduced signaling overhead,
which fulfills one of the objectives that we had identified in
Section III-A, namely objective (iv).

D. System Design

Based on the above design guidelines, our adaptive algorithm
should (i) monitor the number of signals received at the end of
each round, and (ii) drive the system to the point of operation
where this value is equal to the number of copies injected at the
beginning of the round. To do this, in this paper we rely on con-
trol theory, which provides the theoretical basis for monitoring
a given variable (the output signal in control theory terminol-
ogy) and driving it to some desired value (the reference signal).

Following a control theoretic design, we propose the system
depicted in Fig. 4. This system is composed from a controller
C(z), which is the adaptive algorithm that controls the chunk
delivery, and the controlled system H(z), which represents the
HYPE network. Furthermore, the component z−1 provides the
delay in the feedback-loop (to account for the fact that the d
value used in the current round is computed from the behavior
observed in the previous round). For the controller, we have de-
cided to use a Proportional-Integral (PI), because of its simplic-
ity and the fact that it guarantees zero error in the steady-state.
The z transform of the PI controller is given by:

C(z) = Kp + Ki

z − 1
(8)

where Kp and Ki are the parameters of the controller.
Here, the variable that we want to optimally adjust is the

number of deliveries at the beginning of the round (i.e., d). Fol-
lowing classical control theory [25], this variable is the control

signal provided by the controller. In each round, the controller
monitors the system behavior (and in particular the output
signal, which we will define later), given the value d that is cur-
rently used. Based on this behavior, it decides whether to
increase or decrease d in the next round, in order to drive the
output signal to the reference signal.

A key aspect of the system design is the definition of the
output and reference signals. On the one hand, we need to en-
force that by driving the output signal to the reference signal, we
bring the system to the optimal point of operation. On the other
hand, we also need to ensure that the reference signal is a con-
stant value that does not depend on variable parameters, such
as the number of nodes or the contact rates.

Following the arguments exposed in Section IV-C, we de-
sign the output signal O(t) and the reference signal R of our
controller as follows:{

O(t) = s(t) − d(t)

R = 0
(9)

where d(t) is the number of deliveries at the beginning of a
given round t, and s(t) is the number of signals received at the
end of this round. Note that, with the above output and reference
signals, by driving O(t) to R we bring the system to the point of
operation given by s = d, which, as discussed previously, cor-
responds to the optimal point of operation. Following classical
control theory, we represent the randomness of the system by
adding some noise W(t) to the output signal, as shown by Fig. 4.

E. Control Theoretic Analysis

The behavior of the proposed system (in terms of stability
and response time) depends on the parameters of the controller
C(z), namely Kp and Ki. In the following, we conduct a control
theoretic analysis of the system and, based on this analysis,
calculate the setting of these parameters. Note that this analysis
guarantees that the algorithm quickly converges to the desired
point of operation and remains stable at that point.

In order to analyze our system from a control theoretic stand-
point, we need to characterize the HYPE network with a trans-
fer function H(z) that takes d as input and provides s − d as
output. In order to derive H(z), we proceed as follows. Accord-
ing to the definition given in Proposition 1, Gd is the gain
resulting from sending an extra copy of the chunk. In one round,
by sending one extra copy of the chunk at the beginning, there
are on average s/d additional nodes that have the chunk at the
end. Indeed, s is the total number of nodes that receive the
chunk from only one of the d initial seed nodes, which means
that on average each seed node contributes with s/d to this
number. This yields to:

Gd = s/d − 1, (10)

from which:

s − d = Gdd. (11)

The above provides a nonlinear relationship between d and
s − d, since Gd (given by Eq. (7)) is a non-linear function of d.
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To express this relationship as a transfer function H(z), we
linearize it at the optimal point of operation.8 Then, we study
the linearized model and ensure its stability through appropriate
choice of parameters. Note that the stability of the linearized
model guarantees that our system is locally stable.9

To obtain the linearized model, we approximate the perturba-
tions suffered by s − d at the optimal point of operation, �(s −
d), as a linear function of the perturbations suffered by d, �d,

�(s − d) ≈ ∂(s − d)

∂d
�d, (12)

which gives the following transfer function for the linearized
system:

H(z) = ∂(s − d)

∂d
. (13)

Combining the above with Eq. (11), we obtain the following
expression for H(z):

H(z) = ∂(s − d)

∂d
= Gd + d

∂Gd

∂d
. (14)

Evaluating H(z) at the optimal point of operation (Gd = 0)

yields:

H(z) = d
∂Gd

∂d
. (15)

To calculate the above derivative, we approximate λi (given
by λi = i(N − i)μβ ) by its first order Taylor polynomial eval-
uated at level i = d̂, where d̂ is the average value of i at time
Tc (i.e., the average number of nodes that have the chunk at the
deadline).Since the Taylor polynomial provides an accurate ap-
proximation for small perturbations around d̂, and the number
of nodes that have the chunk at time Tc is distributed around
this value, we argue that this approximation leads to accurate
results. The first order Taylor polynomial for λi at i = d̂ is:

λi ≈ λd̂ − (i − d̂)(2d̂ − N)μβ . (16)

Substituting this into Eq. (7) yields

Gd = 1

λd

N∑
i=1

pd
i (Tc)

(
λd̂ − (i − d̂)(2d̂ − N)λ

)
− 1

= λd̂

λd
− 1 = d̂(N − d̂)μβ

d(N − d)μβ

− 1 (17)

Since at the optimal point of operation we have Gd = 0, this
implies that (at this operating point) d = d̂. Moreover, from
Theorem 3 we have that, when operating at the optimal point, if
we deliver one additional copy at the beginning (i.e., increase d
by one unit), this leads to one additional node with the chunk at

8This linearization provides a good approximation of the behavior of the
system when it suffers small perturbations around the stable point of operation
[26]. Note that the approximation only affects the transient analysis and not the
analysis of the stable point of operation at which the system is brought by the
algorithm.

9A similar approach was used in [27] to analyze the Random Early Detection
(RED) scheme from a control theoretic standpoint.

the end (i.e., d̂ also increases by one unit). Therefore, at the op-
timal operating point we also have ∂ d̂/∂d = 1. Accounting for
all of this when performing the partial derivative of Gd yields:

∂Gd

∂d
= 2(2d − N)

d(N − d)
, (18)

from which:

H(z) = d
∂Gd

∂d
= −2(N − 2d)

N − d
. (19)

Having obtained the transfer function of our HYPE network,
we finally address the configuration of the controller parameters
Kp and Ki, that will ensure a good trade-off between our sys-
tem’s stability and response time. To this end, we apply the
Ziegler-Nichols rules [28], which have been designed for this
purpose. According to these rules, we first obtain the Kp value
that leads to instability when Ki = 0; this value is denoted by
Ku. We also calculate the oscillation time Ti under these condi-
tions. Once the Ku and Ti values have been derived, Kp and Ki

are configured as follows:

Kp = 0.4Ku, Ki = Kp

0.85Ti
. (20)

Let us start by computing Ku, i.e., the Kp value that ensures
stability when Ki = 0. From control theory [25], we have that
the system is stable as long as the absolute value of the closed-
loop gain is smaller than 1. The closed-loop transfer function
T(z) of the system depicted in Fig. 4 is given by:

T(z) = −H(z)C(z)

1 − z−1H(z)C(z)
. (21)

To ensure that the closed-loop gain of the above transfer
function is smaller than 1, we need to impose |H(z)C(z)| < 1.
Doing this for Ki = 0 yields:

|H(z)C(z)| =
∣∣∣∣−2(N − 2d)

N − d
Kp

∣∣∣∣ < 1. (22)

The above inequality gives the following upper bound for Kp,
at which the system turns unstable:

Kp <
N − d

2(N − 2d)
. (23)

We want to ensure that the system is stable independently of
N and d, that is, the above inequality holds for any N and d val-
ues. Since the smallest possible value that the right-hand side of
Eq. (23) can take is 1/2 (when d → 0), the system is guaranteed
to be stable as long as Kp < 1/2, and may turn unstable when
Kp exceeds this value. Accordingly, we set Ku = 1/2. Fur-
thermore, when the system becomes unstable, the control signal
d may change its sign up to every round, yielding an oscillation
period of two rounds, which gives Ti = 2. With these Ku and Ti

values, we set Kp and Ki following Eq. (20),

Kp = 0.4

2
, Ki = 0.4

2 · 2 · 0.85
, (24)

which terminates the configuration of the PI controller.
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Fig. 5. The analytical model provides very accurate results for different settings (μβ is given in contacts/pair/day).

While the Ziegler-Nichols rules aim at providing a good
trade-off between stability and response time, they are heuristic
in nature and thus do not guarantee the stability of the system.
The following theorem proves that the system is stable with the
proposed configuration.

Theorem 4: The HYPE control system is stable for Kp = 0.2
and Ki = 0.4/3.4.

V. PERFORMANCE EVALUATION

In this section, we evaluate HYPE for a wide range of sce-
narios, including several instances of a heterogeneous mobility
model, as well as real-world mobility traces. We show that:

• The analytical model provides very accurate results.
• The optimal strategy for data chunk delivery effectively

minimizes the load incurred in the cellular network.
• The proposed adaptive algorithm is stable and quickly

converges to optimal operation.
• HYPE outperforms previously proposed heuristics in

terms of the cellular load, signaling load and fairness
among users.

From the four design objectives introduced in Section III-A,
our evaluation focuses on the traffic offload, fairness and signal-
ing overhead. Note that, since the delay guarantees are satisfied
by design, we meet the objective on the delay.

a) Simulation Setting: To evaluate the performance of
HYPE, we use both real mobility traces and a heterogeneous
mobility model. For the evaluation with real mobility traces,
we select the contact traces collected in the Haggle project for
4 days during Infocom 2006 [24], and the GPS location traces
of San Francisco taxicabs,10 collected through the Cabspotting
project [29]. The number of users for the Infocom 2006 and San
Francisco traces are 78 and 536, respectively.

As for the heterogeneous mobility model, we generate con-
tacts as follows. For any given node pair (x, y), the pairwise
inter-contact times are exponentially distributed with rate βxy.
The pairwise contact rates, βxy, are drawn from a Pareto distri-
bution11 with mean μβ (which determines the average frequency
of the contacts) and standard deviation σ (which determines the

10We assume two taxicabs are in contact when they are within 100 meters of
each other.

11Under these conditions, the tail of the aggregate inter-contact times decays
as a power law with exponential cut-off [20], as observed in traces, in [19].

level of heterogeneity). To account for sparser scenarios, we also
run some experiments where a node pair has a probability p > 0
of never meeting, i.e., βxy = 0 (otherwise the inter-contact rate
for the pair βxy is drawn as above). In addition, we generate con-
tact durations δ from a Pareto distribution with parameter α=2,
as observed in [30]. Following the findings in [17], we choose
the average contact rate μβ and the average contact duration
E[δ] values such that 1/(μβ · E[δ]) is between 100 and 1000.

In all the simulations, we set the throughput of the cellular
communication to one mobile node equal to 600 kb/s [31]
and the bandwidth of opportunistic communication to 20 Mb/s.
All the results given in this section are provided with 95%
confidence intervals below 0.1%.

b) Baseline Scenarios: For the heterogeneous mobility
model, we use the following four baseline scenarios:

• streaming: N =100, mean contact rate μβ =13 contacts/
pair/day [24] and σ = 0.58 · μβ , Pareto-distributed con-
tact duration E[δ] = 66.46 s, Tc = 120 s [32] and chunk
size L = 1 MB,

• road traffic update: N = 1000, mean contact rate μβ =
1.2 contacts/pair/day and σ =1.5 · μβ , Pareto-distributed
contact duration E[δ] = 72 s, Tc = 600 s, L = 1 MB [5],

• news feed: N =100, mean contact rateμβ =0.69 contacts/
pair/day [24] and σ =2 · μβ , Pareto-distributed contact
durationE[δ]=125 s, Tc =3600 s [32], L=0.5 MB,

• social data: N =50, mean contact rate μβ =3.5 contacts/
pair/day [24] and σ = μβ , Pareto-distributed contact du-
ration E[δ] = 164 s, Tc = 900 s, L = 4 KB.

A. Validation of the Model

In order to validate the analysis conducted in Section III,
we evaluate the total load incurred in the cellular network (D)

as a function of the strategy followed (which is given by the
number of copies of the data chunk delivered at the beginning
of a round, d). The results obtained are depicted in Fig. 5 for
a scenario with N = 200, σ = 0.04 contacts/pair/day, and dif-
ferent values of Tc (in seconds) and μβ (in contacts/pair/day).
We observe that the analytical results follow very closely those
resulting from simulations, which validates the accuracy of our
analysis. We further observe that, as pointed out in Section IV,
performance degrades for smaller and larger values of d, since
when either too few or too many nodes have the content,
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Fig. 6. Validation of the optimal strategy for the four baseline scenarios.

Fig. 7. Cellular load D as a function of the level of heterogeneity (σ ) and
network sparsity (p).

information spreads slowly. The figure finally shows that—
given μb = 17—a smaller Tc (of 40 s) causes a higher load of
cellular network than a larger one (of 60 s).

B. Performance Gain and Validation of the Optimal Strategy

We next evaluate the performance gains that can be achieved
by opportunistic communications in the four baseline scenarios
identified earlier and validate the optimal strategy to confirm
that it achieves the highest possible gains. Fig. 6 gives the per-
formance obtained for the four baseline scenarios with: (i) the
optimal d value provided by Theorem 3, labeled Optimal
Strategy, (ii) the strategy proposed in Section IV-C for the
design of the adaptive algorithm, labeled d = s, and (iii) the
adaptive algorithm implemented by HYPE, labeled HYPE. For
each strategy, the figure shows the absolute average load of the
cellular network in number of chunk copies per round (D).

The results obtained show that the proposed approach can
reduce very substantially the load of the cellular network (with
offloaded traffic ranging from almost 50% in the social data
scenario to more than 95% in the road traffic one). The tests
also show that the adaptive algorithm implemented by HYPE is
very effective in minimizing this load, as it performs practically
as the benchmarks given by the optimal and d = s strategies.

C. Impact of Heterogeneity and Sparsity

To understand the impact of the heterogeneity of pairwise
contact ratesβxy on the proposed approach,Fig. 7 depicts the total
cellular load D for the streaming scenario, with varying σ ’s.
The effect of network sparsity is also shown by using different
values for the the probability p that a pair of nodes never meet.

We note that HYPE achieves a performance very close to the
optimal, which confirms that the HYPE design also works for

Fig. 8. Evolution of the control signal d over time for different Kp, Ki settings.
Our selection of parameters is stable and reacts quickly.

heterogeneous settings, as well as sparse ones. In the sparsest
tested scenario (p = 0.50), D increases by ≈ 38% as compared
to p = 0, as a result of the slower dissemination caused by the
decreasing number of connections (i.e., larger p). Furthermore,
for all tested p values, the cellular load D is mostly insensitive to
variations of σ both for HYPE and the optimal strategy, which
is in line with Theorem 1.

D. Stability and Response Time

Based on the control theoretic analysis conducted in
Section IV, the parameters Kp, Ki of the PI controller have been
chosen to guarantee stability and ensure a good response time.
In order to assess the effectiveness of this configuration, we
evaluate its performance for the streaming baseline scenario and
compare it against different choices for the values of parameters
Kp, Ki. In Fig. 8, we show the evolution of the control signal d
over time for our setting Kp = 0.2, Ki = 0.1176, as well as a
setting of these parameters ten times larger, labeled [Kp, Ki] ×
10 and ten times smaller, labeled [Kp, Ki]/10. In the test, μβ

increases from 13 contacts/pair/day to 40 contacts/pair/day
after 250 rounds. (For instance, this could be the result of an
increase in the number of contacts at rush hour). Results show
that our setting is stable and reacts quickly, while a larger setting
of Kp, Ki is highly unstable and a smaller setting reacts very
slowly. This confirms the choice of parameters made for our
controller. We also conducted a similar experiment in which we
varied N (which could be for instance the result of a change in
content popularity) and observed a similar behavior (not shown
in the figure for space reasons).

The above experiment shows the response of the controller
to a drastic change. In order to confirm that this response is suf-
ficiently quick to follow the variations of the opportunistic con-
tacts in a realistic environment, we consider the San Francisco
real traces and study the temporal evolution of the cellular load
D. To provide a benchmark, we compare HYPE against an opti-
mal strategy that selects the best d value every ten rounds.12 The
results, for a content deadline Tc = 600 s, are plotted in Fig. 9.
These results confirm that HYPE reacts rapidly to dynamic
conditions: as there are fewer number of contacts during night

12For the optimal strategy, we make an exhaustive search over all possible d
values every ten rounds and select the best one. Note that such a strategy cannot
be used in practice and is only considered for comparison purposes.
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Fig. 9. San Francisco real traces (N = 536): Temporal evolution of the cellu-
lar load D for HYPE and optimal strategy, with deadline Tc = 600 sec.

Fig. 10. Comparison with Push-and-Track heuristics [5].

time, HYPE needs to inject more content through the cellular
network (up to D ≈ N), while the higher number of contacts
during day time greatly reduces the network load (D ≈ 220).

E. When to Deliver: HYPE Strategy Versus Other Approaches

One of our key findings in Section IV is that performance
is optimized when all the deliveries over the cellular network
take place at the beginning and at the end of the period. To
validate this result, Fig. 10 compares the performance of HYPE
against the Push-and-Track heuristics proposed in [5] (namely,
Sqrt, Linear and Quadratic), which distribute the deliveries
along the period. Results are given for the social data scenario
with a varying number of subscribed users N. We observe
from the figure that HYPE substantially outperforms all other
approaches (the cellular load is even halved, in some cases), and
performs very closely to the Optimal Strategy benchmark.

In addition to the above experiment, conducted with a
mobility model, we also compare the performance of HYPE
against the other approaches with real mobility traces. The
results, depicted in Fig. 11, show that HYPE closely follows the
performance of the benchmark given by the optimal strategy
and outperforms previous heuristics. For the San Francisco
real traces, HYPE can offload about 20% more traffic than the
previous heuristics. For the Infocom 2006 traces, the employed
strategy has a smaller impact on cellular load performance,
which yields to a smaller gain (up to about 12%).13

13Indeed, by conducting experiments with the Infocom 2006 traces for
many different strategies (unreported here for space reasons), we observed that
performance was relatively similar for all of them, which shows that the impact
of the specific strategy followed is limited for this case.

Fig. 11. Tests using real mobility traces for different deadlines Tc. HYPE
performs closely to the benchmark provided by the optimal strategy and
substantially outperforms previous heuristics. (a) San Francisco real traces.
(N = 536) (b) Infocom 2006 real traces (N = 78).

F. Which Seed Nodes: Comparison to Other
Selection Methods

One of the key decisions in the HYPE design is to randomly
select a node when transmitting content over the cellular net-
work. In order to gain insight into the impact of this design
decision, we compare HYPE against the heuristic approach pro-
posed in [6] to select the seed nodes in the opportunistic net-
work. Unlike HYPE, [6] requires full knowledge of the pairwise
contact rates to identify the target set of users, which involves
a much higher level of complexity. Note that, since [6] does
not provide an algorithm to compute the number of copies d of
the data chunk, we apply the HYPE strategy to compute d also
for [6].

Fig. 12 shows the performance of both approaches in terms of
cellular traffic load (D) and fairness for different values of het-
erogeneity σ , for the social data scenario. To measure fairness,
we apply the Jain’s Fairness Index (JFI) to the total number of
cellular and opportunistic communications involving a node.14

The results show that HYPE provides a much higher level of
fairness than [6] with negligible loss in terms of cellular traffic
load. Therefore, HYPE does not only feature a simpler imple-
mentation than [6], as it does not need to know the individual
inter-contact rates, but also provides a much better trade-off
between fairness and cellular load performance. The results of
this and the previous section are particularly relevant as the
algorithms of [5] and [6] are the only existing proposals in the
literature to offload cellular networks with opportunistic com-
munications while providing deterministic delay guarantees.

14For instance, a node that (i) receives the content through the cellular
network and (ii) sends it to n nodes in range during the period, will have a
total number of communications equal to n + 1.




