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Abstract. Given a tree and a set P of non-trivial simple paths on it,
Vpt(P) is the VPT graph (i.e. the vertex intersection graph) of P, and
Ept(P) is the EPT graph (i.e. the edge intersection graph) of the paths
P of the tree T . These graphs have been extensively studied in the liter-
ature. Given two (edge) intersecting paths in a graph, their split vertices
is the set of vertices having degree at least 3 in their union. A pair of
(edge) intersecting paths is termed non-splitting if they do not have split
vertices (namely if their union is a path). In this work, we define the
graph Enpt(P) of edge intersecting non-splitting paths of a tree, termed
the ENPT graph, as the (edge) graph having a vertex for each path in P,
and an edge between every pair of paths that are both edge-intersecting
and non-splitting. A graph G is an ENPT graph if there is a tree T and
a set of paths P of T such that G = Enpt(P), and we say that 〈T,P〉 is a
representation of G. We show that trees, cycles and complete graphs are
ENPT graphs. We characterize the representations of chordless ENPT
cycles that satisfy a certain assumption. Unlike chordless EPT cycles
which have a unique representation, these representations turn out to be
multiple and have a more complex structure. Therefore, in order to give
this characterization, we assume the EPT graph induced by the vertices
of a chordless ENPT cycle is given, and we provide an algorithm that
returns the unique representation of this EPT,ENPT pair of graphs.
These representations turn out to have a more complex structure than
chordless EPT cycles.

? This work was supported in part by the Israel Science Foundation grant No. 1249/08,
by TUBITAK PIA BOSPHORUS grant No. 111M303, by BAP grant No. 6461 and
by Catedra de Excelencia of Universidad Carlos III de Madrid.



1 Introduction

1.1 Background

Given a tree T and a set P of non-trivial simple paths in T , the Vertex Intersec-
tion Graph of Paths in a Tree (VPT) and the Edge Intersection Graph of Paths
in a Tree (EPT) of P are denoted by Vpt(P) and Ept(P), respectively. Both
graphs have P as vertex set. Vpt(P) (resp. Ept(P)) contains an edge between
two vertices if the corresponding two paths intersect in at least one vertex (resp.
edge). A graph G is VPT (resp. EPT) if there exist a tree T and a set P of non-
trivial simple paths in T such that G is isomorphic to Vpt(P) (resp. Ept(P)).
In this case we say that 〈T,P〉 is a VPT (resp. EPT) representation of G.

In this work we focus on edge intersections of paths, therefore whenever we
are concerned with intersection of paths we omit the word ”edge” and sim-
ply write that two paths intersect. We define a new class of graphs, called the
graphs of edge intersecting and non-splitting paths of a tree (ENPT). Given a
representation 〈T,P〉 as described above, the related ENPT graph, denoted by
Enpt(P), has a vertex v for each path Pv of P and two vertices u, v of Enpt(P)
are adjacent if the paths Pu and Pv intersect and do not split (that is, their
union is a path). A graph G is an ENPT graph if there is a tree T and a set of
paths P of T such that G is isomorphic to Enpt(P). We study the properties
of this class ENPT.

We note that when T is a path Ept(P) = Enpt(P) is an Interval Graph.
Therefore the class ENPT includes all Interval Graphs. Our aim is to study the
structure of ENPT in order to classify them in the hierarchy of edge intersection
graphs of paths in a tree.

EPT and VPT graphs have applications in communication networks. As-
sume that we model a communication network as a tree T and the message
routes to be delivered in this communication network as paths on T . Two paths
conflict if they both require to use the same link (vertex). This conflict model
is equivalent to an EPT (a VPT) graph. Suppose we try to find a schedule for
the messages such that no two messages sharing a link (vertex) are scheduled
in the same time interval. Then a vertex coloring of the EPT (VPT) graph
corresponds to a feasible schedule on this network. The motivation for the split
condition for the paths can be summarized as follows: In optical networks, a
router is an equipment responsible to route a message to a direction determined
by its wavelength. So that two messages, corresponding to two splitting paths,
can be correctly routed to different directions, they should be assigned two dif-
ferent wavelengths (see [REF] for more information).

EPT and VPT graphs have been extensively studied in the literature. Al-
though VPT graphs can be characterized by a fixed number of forbidden sub-
graphs [13], it is shown that EPT graph recognition is NP-complete [11]. Edge
intersection and vertex intersection give rise to identical graph classes in the case
of paths in a line and in the case of subtrees of a tree. However, VPT graphs
and EPT graphs are incomparable in general; neither VPT nor EPT contains
the other. Main optimization and decision problems such as recognition [5], the



maximum clique [6], the minimum vertex coloring [9] and the maximum stable
set problems [14] are polynomial-time solvable in VPT whereas recognition and
minimum vertex coloring problems remain NP-complete in EPT graphs [10].
In contrast, one can solve in polynomial time the maximum clique [11] and the
maximum stable set [15] problems in EPT graphs.

After these works on EPT and VPT graphs in the early 80’s, this topic
did not get focus until very recently. Current research on intersection graphs
is concentrated on the comparison of various intersection graphs of paths in a
tree and their relation to chordal and weakly chordal graphs [7, 12]. Also, some
tolerance model is studied via k-edge intersection graphs where two vertices are
adjacent if their corresponding paths intersect on at least k edges [8]. Besides,
several recent papers consider the edge intersection graphs of paths on a grid
(e.g [1]).

1.2 Our Contribution

In this work we define the new family of ENPT graphs, and investigate its
basic properties. We first study possible ENPT representations of some basic
structures such as trees, cliques and holes. It should be noted that cliques play
a crucial role in showing the NP-hardness of EPT graph recognition [10]. On
the other hand, some forbidden subgraphs are determined in [11] using the fact
that chordless cycles have a unique EPT representation, called a pie. It turns
out that in ENPT graphs, representations of chordless cycles have a much more
complicated structure, yielding several possible representations. In fact, given a
chordless cycle C, several ENPT representations 〈T,P〉 such that Enpt(P) is
isomorphic to C but Ept(P) are non-isomorphic to each other are possible (see
Figure 2).

Consider the pair (G,C) where G is a graph and C is a Hamiltonian cycle
of G. We restrict our attention to the determination of a representation 〈T,P〉
such that Ept(P) = G and Enpt(P) = C. In this case we will say that 〈T,P〉
is a representation of (G,C).

In Section 2 we give definitions, preliminaries and we provide ENPT repre-
sentations of basic graphs such as trees, cliques and cycles. We also characterize
all the ENPT representations of cliques. In Section 3 we obtain basic results
regarding ENPT graphs, their relationship with EPT graphs and their repre-
sentation. We then define the contraction operation, which is basically replacing
two paths with their union provided that this union is a path. In Section 4 we
introduce three assumptions and we characterize the representations of ENPT
holes, i.e. representations 〈T,P〉 for pairs (G,C), where C is a Hamiltonian cycle
of G, such that Ept(P) = G and Enpt(P) = C, satisfying these assumptions.
In Section 5 we relax two out of these three assumptions, and extend the result
of Section 4. Most of the proofs are either sketched or omitted in this Extended
Abstract. The complete proofs appear in [2], except for Section 5 whose details
can be found in [3].



2 Preliminaries and Basic Results

In this section we give definitions, present known related results, and develop
basic results. The section is organized as follows: Section 2.1 is devoted to ba-
sic definitions, in Section 2.2 we present known results on EPT graphs and in
Section 2.3 we present some basic ENPT graphs.

2.1 Definitions

General Notation: Given a graph G and a vertex v of G, we denote by dG(v) the
degree of v in G. A vertex is called a leaf (resp. intermediate vertex, junction) if
dG(v) = 1 (resp. = 2,≥ 3). Whenever there is no ambiguity we omit the subscript
G and write d(v). Given a graph G, V̄ ⊆ V (G) and Ē ⊆ E(G) we denote by
G[V̄ ] and G[Ē] the subgraphs of G induced by V̄ and by Ē, respectively. The

union of two graphs G,G′ is the graph G∪G′ def= (V (G)∪V (G′), E(G)∪E(G′)).
The join G+G′ of two disjoint graphs G,G′ is the graph G ∪G′ together with

all the edges joining V (G) and V (G′), i.e. G + G′
def
= (V (G) ∪ V (G′), E(G) ∪

E(G′)∪(V (G)×V (G′))). Given a (simple) graph G and e ∈ E(G), we denote by
G/e the (simple) graph obtained by contracting the edge e = {p, q} of G, i.e. by
coinciding the two endpoints of e to a single vertex p.q and removing self loops
and parallel edges. For any two vertices u, v of a tree T we denote by pT (u, v)
the unique path between u and v in T . We denote the set of all positive integers
at most k as [k].

Intersections and union of paths: Given two paths P, P ′ in a graph, P ‖ P ′
means that P and P ′ are non-intersecting, i.e. edge-disjoint. The split vertices
of P and P ′ is the set of junctions in their union P ∪ P ′ and is denoted by
split(P, P ′). Whenever P and P ′ intersect and split(P, P ′) = ∅ we say that P
and P ′ are non-splitting and denote this by P ∼ P ′. In this case P ∪ P ′ is a
path or a cycle. When P and P ′ intersect and split(P, P ′) 6= ∅ we say that they
are splitting and denote this by P � P ′. Clearly, for any two paths P and P ′

exactly one of the following holds: P ‖ P ′, P ∼ P ′, P � P ′. When the graph G
is a tree, the union P ∪ P ′ of two intersecting paths P, P ′ of G is a tree with at
most two junctions, i.e. |split(P, P ′)| ≤ 2 and P ∪P ′ is a path whenever P ∼ P ′.
The VPT, EPT and ENPT graphs: Let P be a set of paths in a tree T . The
graphs Vpt(P),Ept(P) and Enpt(P) are graphs such that V (Enpt(P)) =
V (Ept(P)) = V (Vpt(P)) = {p|Pp ∈ P)}. Given two distinct paths Pp, Pq ∈ P,
{p, q} is an edge of Enpt(P) if Pp ∼ Pq, and {p, q} is an edge of Ept(P) (resp.
Vpt(P)) if Pp and Pq have a common edge (resp. vertex) in T . It follows that:

Remark 1. E(Enpt(P)) ⊆ E(Ept(P)) ⊆ E(Vpt(P)).

Two graphs G and G′ such that V (G) = V (G′) and E(G′) ⊆ E(G) are termed a
pair (of graphs) denoted as (G,G′). If Ept(P) = G (resp. Enpt(P) = G) we say
that 〈T,P〉 is an EPT (resp. ENPT) representation for G. If Ept(P) = G and
Enpt(P) = G′ we say that 〈T,P〉 is a representation for the pair (G,G′). Given a



pair (G,G′) the sub-pair induced by V̄ ⊆ V (G) is the pair (G[V̄ ], G′[V̄ ]). Clearly,
any representation of a pair induces representations for its induced sub-pairs.

Throughout this work, in all figures, the edges of the tree T of a representation
〈T,P〉 are drawn as solid edges whereas the paths on the tree are shown by
dashed edges. Similarly, edges of Enpt(P) are drawn with solid or blue lines
whereas edges in E(Ept(P)) \ E(Enpt(P)) are dashed or red. We sometimes
refer to them as blue and red edges, respectively. For an edge e = {p, q} we use
split(e) as a shorthand for split(Pp, Pq). We note that e is a red edge if and only
if split(e) 6= ∅.
Cycles, Chords, Holes, Outerplanar graphs, Trees: Given a graph G and
a cycle C of it, a chord of C in G is an edge of E(G) \ E(C) connecting two
vertices of V (C). The length of a chord connecting the vertices i,j is the length
of a shortest path between i and j on C. C is a hole (chordless cycle) of G if G
does not contain any chord of C. This is equivalent to saying that the subgraph
G[V (C)] of G induced by the vertices of C is a cycle. For this reason a chordless
cycle is also called an induced cycle.

An outerplanar graph is a planar graph that can be embedded in the plane
such that all its vertices are on the unbounded face of the embedding. An out-
erplanar graph is Hamiltonian if and only if it is biconnected; in this case the
unbounded face forms the unique Hamiltonian cycle. The weak dual graph of a
planar graph G is the graph obtained from its dual graph by removing the vertex
corresponding to the unbounded face of G. The weak dual graph of an outerpla-
nar graph is a forest, and in particular the weak dual graph of a Hamiltonian
outerplanar graph is a tree [4].

2.2 Preliminaries on EPT graphs

We now present definitions and results from [11]. A pie of a representation 〈T,P〉
of an EPT graph is an induced star K1,k of T with k leaves v0, v1, . . . , vk−1 ∈
V (T ), and k paths P0, P1, . . . Pk−1 ∈ P, such that for every 0 ≤ i ≤ k − 1 both
vi and v

(i+1) mod k
are vertices of Pi. We term the central vertex of the star

as the center of the pie. It is easy to see that the EPT graph of a pie with
k leaves is the hole Ck on k vertices. Moreover, this is the only possible EPT
representation of Ck when k ≥ 4:

Theorem 1. [11] If an EPT graph contains a hole with k ≥ 4 vertices, then
every representation of it contains a pie with k paths.

Let Pe
def
= {p ∈ P| e ∈ p} be the set of paths in P containing the edge

e. A star K1,3 is termed a claw. For a claw K of a tree T , P[K]
def
=

{p ∈ P| p uses two edges of K}. It is easy to see that both Ept(Pe) and
Ept(P[K]) are cliques. These cliques are termed edge clique and claw clique,
respectively. Moreover, these are the only possible representations of cliques.

Theorem 2. [11] Any maximal clique of an EPT graph with representation
〈T,P〉 corresponds to a subcollection Pe of paths for some edge e of T , or to a
subcollection P[K] of paths for some claw K of T .



2.3 Some ENPT graphs

In this section we show that trees, cycles and cliques are ENPT graphs, and
give a complete characterization of the ENPT representations of cliques:

Lemma 1. Every clique K of Enpt(P) corresponds to an edge clique of
Ept(P), such that the union of the paths representing K is a path.

A direct consequence of Lemma 1 is that the maximum clique problem in
ENPT graphs can be solved in polynomial time. As there are at most O(V (T )3)
maximal cliques in G, a maximum clique can be found using a clique enumeration
algorithm, e.g. [16].

Lemma 2. Every tree is an ENPT graph.

Let T be a tree with k leaves and π = (π0, . . . , πk−1) a cyclic permutation
of the leaves. The tour (T, π) is the following set of 2k paths: (T, π) contains
k long paths, each of which connecting two consecutive leaves πi, πi+1 mod k

.
(T, π) contains k short paths, each of which connecting a leaf πi and its unique
neighbor in T (see Figure 1-c). Note that ENPT((T, π)) is a cycle.
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Fig. 1. a) A minimal representation of C4 b) A minimal representation of C5 c) A tour
representation of the even hole C10, d) A representation of the odd hole C11

A planar embedding of a tour is a planar embedding of the underlying tree
such that any two paths of the tour do not cross each other. A tour is planar
if there exists a planar embedding of it. The tour in Figure 1-c is a planar
embedding of a tour. Note that a tour (T, π) is planar if and only if π corresponds
to the order in which the leaves are encountered by some DFS traversal of T .

Lemma 3. Every cycle Ck is an ENPT graph.

Proof. C3 = K3 is an ENPT graph by Lemma 1. As for C4 and C5, possible
ENPT representations are shown in Figure 1-(a,b), respectively. Any even hole
C2k, (k ≥ 3) is an ENPT graph. Indeed, for any tree T with k leaves, and a cyclic
permutation π of its leaves, the tour (T, π) constitutes an ENPT representation
of C2k. Any odd hole C2k+1, (k ≥ 3) is an ENPT graph. Let T be a tree with
k leaves. Split any long path of some tour (T, π) into two intersecting sub-paths
such that no chord is created (if necessary subdivide an edge of the tree into two
edges) (see Figure 1-d). The set of 2k+ 1 paths obtained in this way constitutes
an ENPT representation for C2k+1. ut



3 Representations of EPT, ENPT Pairs: Basic Properties

In this section we develop the basic tools towards our goal of characterizing
representations of EPT,ENPT pairs. We define an equivalence relation and a
partial order on representations. In this work, we focus on finding representations
that are minimal with respect to this partial order. We define the contraction
operation on pairs, and the union operation on representations. The contraction
operation is a restricted variant of graph contraction operation that operates on
both graphs of a pair. The union operation is the operation of replacing two
paths by their union whenever possible.

Equivalent and minimal representations: We say that the representations
〈T1,P1〉 and 〈T2,P2〉 are equivalent, and denote it by 〈T1,P1〉 u 〈T2,P2〉, if
their corresponding EPT and ENPT graphs are isomorphic under the same
isomorphism (in other words, if they constitute representations of the same pair
of graphs (G,G′)).

We write 〈T2,P2〉 . 〈T2,P2〉 if 〈T2,P2〉 can be obtained from 〈T1,P1〉 by suc-
cessive application of (one of) the following minifying operations: a) Contraction
of an edge e of T1 (and of all the paths in P1 using e), b) Removal of an initial
edge (tail) of a path in P1. 〈T,P〉 is a minimal representation if it is minimal in
the partial order . restricted to the representations representing the same pair.
Throughout the work we aim at characterizing minimal representations.

EPT Holes: The ENPT graph of a pie is an independent set. Therefore

Remark 2. A hole of size at least 4 of an EPT graph does not contain blue (i.e.
ENPT) edges.

Combining with Theorem 1, we obtain the following characterization of pairs
(Ck, G

′):

– k > 3. In this case Ck is represented by a pie. Therefore G′ is an independent
set. In other words, Ck consists of red edges. We term such a hole a red hole.

– k = 3 and Ck consists of red edges (G′ is an independent set). We term such
a hole a red triangle.

– k = 3 and Ck contains exactly one ENPT (blue) edge (G′ = P1 ∪ P2). We
term such a hole a BRR triangle, and its representation is an edge clique.

– k = 3 and Ck contains two ENPT (blue) edges (G′ = P3). We term such a
hole a BBR triangle, and its representation is an edge clique.

– k = 3 and Ck consists of blue edges (G′ = C3). We term such a hole a blue
triangle.

EPT contraction: Let 〈T,P〉 be a representation and Pp, Pq ∈ P such that
Pp ∼ Pq. We denote by 〈T,P〉/Pp,Pq

the representation that is obtained from

〈T,P〉 by replacing the two paths Pp, Pq by the path Pp∪Pq, i.e. 〈T,P〉/Pp,Pq

def
=

〈T,P \ {Pp, Pq} ∪ {Pp ∪ Pq}〉. We term this operation a union, and note the
following important property of split vertices with respect to the union operation,
and the following Lemma that it implies.



Remark 3. For every Pp, Pq, Pr ∈ P such that Pp ∼ Pq, split(Pp ∪ Pq, Pr) =
split(Pp, Pr) ∪ split(Pq, Pr).

Lemma 4. Let 〈T,P〉 be a representation for the pair (G,G′), and let e =
{p, q} ∈ E(G′). Then G/e is an EPT graph. Moreover G/e = Ept(〈T,P〉/Pp,Pq

).

We now extend the definition of the contraction operation to pairs. Based on
Observation 3, the contraction of an ENPT edge does not preserve ENPT edges.
More concretely, let Pp,Pq and Pq′ such that Pp ∼ Pq, Pp ∼ Pq′ and Pq � Pq′ .
Then G′/p,q is not necessarily isomorphic to Enpt(〈T,P〉/Pp,Pq

) as {q′, p.q} /∈
E(Enpt(〈T,P〉/Pp,Pq

)). Let (G,G′) be a pair and e ∈ E(G′). If for every edge

e′ ∈ E(G′) incident to e, the edge e′′ = e4e′ (forming a triangle together with e

and e′) is not an edge of G then (G,G′)/e
def
= (G/e, G

′
/e), otherwise (G,G′)/e is

undefined. Whenever (G,G′)/e is defined we say that (G,G′) is contractible on

e, or that e is contractible. A pair (G,G′) is contractible if it contains at least one
contractible edge. Clearly, (G,G′) is non-contractible if and only if every edge
of G′ is contained in at least one BBR triangle.

4 Representation of ENPT Holes

The ENPT representations of C3 is characterized by Lemma 1. Therefore we
assume n > 3, which implies that (G,Cn) does not contain blue triangles. More-
over, in this section we confine ourselves to pairs (G,Cn) and representations
〈T,P〉 satisfying the following three assumptions:

(P1): (G,Cn) is not contractible.
(P2): (G,Cn) is (K4, P4)-free, i.e., it does not contain an induced sub-pair isomor-

phic to a (K4, P4).
(P3): Every red triangle of (G,Cn) is a claw clique, i.e. corresponds to a pie of

〈T,P〉.

Assumptions (P1), (P2) are relaxed in Section 5. Note that (P1) and (P2) are
assumptions about the pair (G,C) and (P3) is an assumption about the represen-
tation 〈T,P〉. We say that (P3) holds for a pair (G,C) if it has a representation
〈T,P〉 satisfying (P3).

W.l.o.g. let V (G) = V (Cn) = {0, 1, . . . , n− 1} where the numbering of the
vertices follows their order in C. Arithmetic operations on vertex numbers are
modulo n. The corresponding set of paths is P = {P0, . . . , Pn−1}.

C4 is exceptional because all its representations satisfy assumptions (P1−3),
but some of our results fail to hold. The following Lemma 5 characterizes the
representations of (G,C4).

Lemma 5. (i) All the representations of (G,C4) satisfy assumptions (P1− 3),
(ii) G is one of the two graphs in Figure 2, and (iii) each one of these two graphs
has a unique minimal representation (also depicted in Figure 2).
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Fig. 2. Two possible ENPT representations of C4 corresponding to different (G,C4)
pairs.

Weak Dual Trees:

We extend the definition of the weak dual tree of Hamiltonian outerplanar
graphs to any Hamiltonian graph as follows. Given a pair (G,C) where C is
a Hamiltonian cycle of G, a weak dual tree of (G,C) is the weak dual tree
W(G,C) of an arbitrary Hamiltonian maximal outerplanar subgraph O(G,C)
of G. O(G,C) can be built by starting from C and adding to it arbitrarily chosen
chords from G as long as such chords exists and the resulting graph is planar.

Vertices ofW(G,C) correspond to faces of O(G,C), and the faces of O(G,C)
correspond to holes of G. The degree of a vertex of W(G,C) is the number of
red edges in the corresponding face of O(G,C). To emphasize the difference, for
an outerplanar graph G we will refer to the weak dual tree of G, whereas for a
(not necessarily outerplanar) graph G we will refer to a weak dual tree of G.

Edges ofW(G,C) correspond to red edges of O(G,C). The degree of a vertex
of W(G,C) is the number of red edges in the corresponding face of O(G,C).
Therefore leaves (resp. intermediate vertices, junctions) of W(G,C) correspond
to BBR triangles (resp. BRR triangles, red holes) of (G,C). |V (G)| = |V (C)| =
|E(C)| = 2`+ i where ` is the number of leaves of W(G,C) and i is the number
of its intermediate vertices.

Lemma 6. Let n > 4 and (G,Cn) be a pair satisfying (P1 − 3). Then every
edge of Cn is in exactly one BBR triangle.

Lemma 7. Let (G,C) be a pair satisfying (P2), (P3) and letW(G,C) be a weak
dual tree of (G,C). (i) There is a bijection between the contractible edges of
(G,C) and the intermediate vertices of W(G,C). (ii) The tree obtained from
W(G,C) by smoothing out the intermediate vertex corresponding to a con-
tractible edge e is a weak dual tree of (G,C)/e.

We note that Lemma 6 does not hold for n = 4. However the following
corollary of lemmata 6 and 7 holds for every n.

Corollary 1. If (G,C) is a pair satisfying (P1 − 3) with C isomorphic to
Cn, then: (i) W(G,C) does not have intermediate vertices, (ii) n is even and
W(G,C) has n/2 leaves. (iii) W(G,C) is a path if and only if n = 4.

The Minimal Representation: Algorithm 1 gets a pair (G,C) satisfying as-
sumptions (P1), (P2) where C is a (Hamiltonian) cycle of G, and returns a
planar tour that is the unique minimal representation of (G,C) satisfying (P3).

The algorithm finds a planar tour of a weak dual tree W(G,C), and verifies
that the solution found is valid before returning it, otherwise it returns that



no solution exists. The representation
〈
T̄ , P̄

〉
calculated by the algorithm is a

planar tour, that clearly satisfies (P3). If (G,C) has no representation satisfying
(P3), then the algorithm detects this at line 10 and returns correctly that there
is no solution. Therefore, we assume that (G,C) has at least one representation
satisfying (P3). The correctness is implied by the following lemma.

Algorithm 1 BuildPlanarTour(G,C)

Require: |V (G)| ≥ 5, (G,C) satisfies (P1), (P2)
1: T̄ ←W(G,C). . Corresponding to O(G,C)

Build the planar tour:
2: Let {v0, v1, . . . , vk−1} be the leaves of T̄ ordered by the DFS traversal of T̄
3: corresponding to the planar embedding suggested by O(G,C).
4: Let Li = pT̄ (vi, vi+1 mod k

)
5: Let Si be the path of length 1 starting at vi.
6: P̄L ← {Li| 0 ≤ i ≤ n− 1}, P̄S ← {Si| 0 ≤ i ≤ n− 1}.

7: Let P̄i =

{
Li/2 if i is even
Sbi/2c otherwise

8: P̄ ←
{
P̄i| 0 ≤ i ≤ 2n− 1

}
. = P̄L ∪ P̄S

9:
10: if Ept(P̄) = G then return

〈
T̄ , P̄

〉
11: else return ”NO SOLUTION”
12: end if

Lemma 8. Let (G,C) be a pair satisfying (P1− 3), 〈T,P〉 a representation of
(G,C) satisfying (P3) and

〈
T̄ , P̄

〉
the representation returned by the algorithm.

Then
〈
T̄ , P̄

〉 ∼= 〈T,P〉 and
〈
T̄ , P̄

〉
. 〈T,P〉.

Sketch of proof: For a representation 〈T,P〉 of (G,C) that satisfies (P3) we
define a mapping f : V (T̄ ) 7→ V (T ) that maps junctions to junctions. The basic
property of this mapping is that for a given vertex u of W(G,C), and every
vertex i on the corresponding face of O(G,C), the vertex f(u) is on the path Pi.

A junction u of T̄ (=W(G,C)) corresponds to a face of O(G,C) which in turn
corresponds to a hole of G corresponding to a pie of 〈T,P〉. f(u) is the center of
this pie. A leaf v of T̄ is adjacent to a junction u. v corresponds to a BBR triangle
{i− 1, i, i+ 1} of O(G,C). Then {i− 1, i+ 1} is a red edge of G belonging to
the face in O(G,C) corresponding to a pie centered at f(u). Therefore Pi−1 and
Pi+1 are two consecutive paths of this pie, i.e. f(u) ∈ split(Pi−1, Pi+1) and the
paths Pi−1, Pi+1 intersect on some path P of T starting at f(u). The path Pi

satisfies Pi ∼ Pi−1 and Pi ∼ Pi+1, therefore it intersects the path P . f(v) is the
most distant vertex from f(u) on this intersection.

We prove that f preserves the topology of the tree. We then define a
set of paths P∗ of the minimum subtree T ∗ of T containing all the vertices{
f(u)|u ∈ T̄

}
such that 〈T ∗,P∗〉 is equivalent to

〈
T̄ , P̄

〉
and

〈
T̄ , P̄

〉
. 〈T ∗,P∗〉 .

〈T,P〉. ut

We are now ready to prove our main result



Theorem 3. If n > 4 the following statements are equivalent:
(i) (G,Cn) satisfies assumptions (P1− 3).
(ii) (G,Cn) has a unique minimal representation satisfying (P3) which is a pla-
nar tour of a weak dual tree of G.
(iii) G is Hamiltonian outerplanar and every face adjacent to the unbounded face
F is a triangle having two edges in common with F , (i.e. a BBR triangle).

Proof. (i) ⇒ (ii) Implied by Lemma 8.
(ii)⇒ (iii) Consider a planar tour representation 〈T,P〉. We show that EPT(P)
is a Hamiltonian outerplanar graph. As P is a tour, ENPT(P) is a ring, therefore
EPT(P) is Hamiltonian. It is not hard to prove that no chords of this cycle are
crossing.

(iii)⇒ (i) Assume thatG is outerplanar with faces adjacent to the unbounded
face being BBR triangles. Consequently G is K4-free, thus satisfies (P2). More-
over every edge of C is in (exactly) one BBR triangle, therefore (P1) holds. The
planar tour of the weak dual tree of G is a representation of (G,C). This rep-
resentation satisfies (P3) because every edge clique of size 3 contains one short
path whose incident edges are blue. ut

5 Extensions

The details of the results presented in this section are given in [3]. When we
relax assumption (P1) then the unique minimal representation can be obtained
by slightly modifying the planar tour as follows. Let us call breaking apart the
inverse of a sequence of union operations that create one path. A broken tour is
a representation obtained by breaking apart long paths of a tour.

Theorem 4. [3] Let (G,C) be a pair satisfying (P2), (P3). The unique min-
imal representation 〈T ′,P ′〉 of (G,C) satisfying (P3) is a broken planar tour.
Moreover 〈T ′,P ′〉 can be calculated in polynomial-time.

We further relax assumption (P2) and we replace all sub-pairs (K4, P4) by
BBR triangles. The unique minimal representation of the modified pair is a
broken planar tour by Theorem 4. We replace the short paths (corresponding to
the inserted BBR triangles) by two paths in an appropriate way. We call such a
representation a broken planar tour with cherries.

Theorem 5. [3] The minimum representation 〈T,P〉 satisfying (P3) of a pair
(G,C) is an broken planar tour with cherries. Moreover 〈T ′,P ′〉 can be calculated
in polynomial-time.

Generalization of the results to representations that do not satisfy assump-
tion (P3) is work in progress. Note that if we allow red edge cliques in the
representation 〈T,P〉 then 〈T,P〉 is not necessarily a planar tour, as any tour is
a representation of a hole.

Another direction of research would be to investigate the relation of the
class of ENPT graphs with other graph classes, in particular with EPT.



ENPT\EPT 6= ∅ because the wheel graphW5,1 = C5+K1 is in ENPT\EPT. In
[11] graphs in VPT∩EPT are characterized. The characterization of the graphs
in EPT ∩ ENPT is an interesting research topic. Lastly, decision/optimization
problems restricted to ENPT graphs, such as minimum vertex coloring, maxi-
mum stable set, and hardness of recognition of ENPT graphs seem to be major
problems to investigate.
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