
Power-efficient Assignment of Virtual Machines to
Physical Machines?

Jordi Arjona Aroca1,2, Antonio Fernández Anta1, Miguel A. Mosteiro3,4, and
Christopher Thraves4

1 Institute IMDEA Networks, Madrid, Spain
({jorge.arjona,antonio.fernandez}@imdea.org)

2 Universidad Carlos III de Madrid, Madrid, Spain
3 Department of Computer Science, Kean University, Union, NJ, USA

(mmosteir@kean.edu)
4 GSyC, Universidad Rey Juan Carlos, Spain (cbthraves@gsyc.es)

Abstract. Motivated by current trends in cloud computing, we study a version
of the generalized assignment problem where a set of virtual processors has to be
implemented by a set of identical processors. For literature consistency we say
that a set of virtual machines (VMs) is assigned to a set of physical machines
(PMs). The optimization criteria is to minimize the power consumed by all the
PMs. We term the problem Virtual Machine Assignment (VMA). Crucial differ-
ences with previous work include a variable number of PMs, that the VMs cannot
be implemented fractionally (i.e., each VM must be assigned to exactly one PM),
and a parametric minimum power consumption for each active PM. We show that
the VMA problem is NP-hard in the strong sense and we present a VMA offline
approximation algorithm. For this VMA protocol, we show the trade-off between
the running time and the approximation ratio achieved. Furthermore, restricting
the VMA problem to realistic applications, we observe that such protocol is a
PTAS5 for the VMA problem, while there is no FPTAS6. Moving to online VMA
algorithms, we show upper and lower bounds on the competitive ratio when only
2 PMs are available, lower bounds when some arbitrary number m of PMs are
available, and an upper bound when the number of machines is unbounded. We
also carry extensive simulations using real-world input such as Google cluster
data. To the best of our knowledge, this is the first time the VMA problem is
studied for this cost function.

1 Introduction

The current pace of technology developments, and the continuous change in
business requirements, may rapidly yield a given proprietary computational
? This work is supported by the National Science Foundation (CCF-0937829, CCF-1114930),

Comunidad de Madrid grant S2009TIC-1692, MINECO grant TEC2011-29688-C02-01, and
National Natural Science Foundation of China grant 61020106002, MICINN grant Juan de la
Cierva.

5 Polynomial-Time Approximation Scheme
6 Fully Polynomial-Time Approximation Scheme

platform obsolete, oversized, or insufficient. Thus, outsourcing has recently be-
come a popular approach to obtain computational services. Furthermore, in or-
der to attain flexibility, such service is usually virtualized, so that the user may
tune the computational platform to its particular needs. Users of such service
need not to be aware of the particular implementation, but only of the specifi-
cation of the virtual machine they use. This conceptual approach to outsourced
computing has been termed cloud computing, in reference to the cloud symbol
used as an abstraction of a complex infrastructure in system diagrams. Cur-
rent examples of cloud computing providers include Amazon Web Services [1],
Rackspace [5], and Citrix [2].

Depending on what the specific service provided is, the cloud computing
model comes in different flavors, such as infrastructure as a service, platform as
a service, storage as a service, etc. In each of these models, the user may choose
specific parameters of the computational resources provided. For instance, pro-
cessing power, memory size, communication bandwidth, etc. Thus, in a cloud-
computing service platform, various virtual machines (VM) with user-defined
specifications must be implemented by, or assigned to7, various physical ma-
chines (PM)8. Furthermore, such a platform must be scalable, allowing to add
more PMs, should the business growth require such expansion. In this work, we
call this problem the Virtual Machine Assignment (VMA) problem. (A precise
definition is given in Section 1.1.)

From the previous discussion, it can be seen that, underlying VMA, there is
some form of bin-packing problem. However, in VMA the number or capacity
of PMs (i.e., bins for bin packing) may be increased if needed. The optimiza-
tion criteria for VMA depends on what the particular objective function sought
is. Previous work related to VMA has focused on minimizing the number of
PMs used (cf. [12] and the references therein) to minimize energy consump-
tion. However, power consumption is usually superlinear on the load of a given
computational resource [11, 19]. Hence, the use of extra PMs may be more effi-
cient energy-wise than a minimum number of heavily-loaded PMs. On the other
hand, the addition of a new PM to the system usually implies some fixed power-
consumption increase [9, 19], even if such PM is not loaded. In this work, we
combine both power-consumption factors. That is, for some parameters α > 1
and b > 0, we seek to minimize the sum of the α powers of the PMs loads plus
the fixed cost b of using each PM.

7 The cloud-computing literature use instead the term placement. We choose here the term as-
signment for consistency with the literature on general assignment problems.

8 We choose the notation VM and PM for simplicity and consistency, but notice that our study
applies to any computational resource assignment problem, as long as the minimization func-
tion is the one modeled here.

The paper is organized as follows. First, in Section 1.1 we include a for-
mal definition of the problem, we overview related work in Section 1.2 and we
detail our results in Section 1.3. Some preliminaries are included in Section 2.
For the model described, we show that the VMA problem is NP-hard in the
strong sense, even if α is fixed, in Section 3. Then, we present an offline VMA
approximation algorithm, which in fact is a PTAS for this problem for any real-
istic model of power consumption. We also study the competitiveness of online
VMA algorithms (Section 4). For settings where a bounded number m of PMs
are available, we show a lower bound on the competitiveness of online algo-
rithms (with respect to an optimal offline assignment). We improve such bound
for settings where only 2 PMs are available. We also show upper bounds on the
competitiveness of online algorithms for the setting where 2 PMs are available.
Finally, we show an upper bound on the competitiveness of online VMA algo-
rithms when the number of VMs is not bounded. We also present and evaluate
experimentally some heuristics in Section 5.

1.1 Problem Definition

We define the Virtual Machine Assignment (VMA) problem as follows:

Input: A set S = {s1, . . . , sm} of m identical physical machines. Rational
numbers α and b, where α > 1 and b > 0. A set D = {d1, . . . , dn} of
n virtual machines. A function ` : D → R that gives the CPU load each
virtual machine incurs.

Output: A partition π = {A1, . . . , Am} of D.
Objective function: Minimize the power consumption given by the function

P (π) =
∑

i∈[1,m]:Ai 6=∅

((∑
dj∈Ai

`(dj)
)α

+ b

)
.

For convenience, we define the following notation. We overload the function
`(·) to be applied over sets of virtual machines, so that `(Ai) =

∑
dj∈Ai `(dj).

Also, let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) =
xα + b otherwise. Then, the objective function is to minimize

P (π) =
m∑
i=1

f(`(Ai)).

1.2 Related Work

To the best of our knowledge, previous work on VMA has been only experi-
mental [17, 26, 31, 23] or has focused on different cost functions [16, 18, 7, 12].

First, we provide an overview of previous theoretical work for related assign-
ment problems (storage allocation, scheduling, network design, etc.). The cost
functions considered in that work resemble or generalize the power cost function
under consideration here. Secondly, we overview related experimental work.

Chandra and Wong [16], and Cody and Coffman [18] study a problem for
storage allocation that is a variant of VMA with b = 0 and α = 2. Hence, this
problem tries to minimize the sum of the squares of the machine-load vector.
They study the offline version of the problem and provide algorithms with con-
stant approximation ratio. A significant leap was taken by Alon et al. [7], since
they present a PTAS for the problem of minimizing the Lp norm of the load
vector, for any p ≥ 1. This problem has the previous one as special case, and is
also a variant of the VMA problem when p = α and b = 0.

Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scal-
ing in job scheduling [11]. The problem is to schedule the execution of n com-
putational jobs on a single processor, whose speed may vary within a countable
collection of intervals. Each job has a release time, a processing work to be done,
a weight characterizing its importance, and its execution can be suspended and
restarted later without penalty. A scheduler algorithm must specify, for each
time, a job to execute and a speed for the processor. The goal is to minimize
the weighted sum of the flow times over all jobs plus the energy consumption,
where the flow time of a job is the time elapsed from release to completion
and the energy consumption is given by sα where s is the processor speed and
α > 1 is some constant. For the online algorithm shortest remaining processing
time first, the authors prove a (3 + ε) competitive ratio for the objective of to-
tal weighted flow plus energy. Whereas for the online algorithm highest density
first (HDF), where the density of a job is its weight-to-work ratio, they prove
a (2 + ε) competitive ratio for the objective of fractional weighted flow plus
energy.

A generalization of the above problem is studied by Gupta, Krishnaswamy,
and Pruhs in [19]. The question addressed is how to assign jobs, possibly frac-
tionally, to unrelated parallel machines in an online fashion in order to minimize
the sum of the α-powers of the machine loads plus the assignment costs. Upon
arrival of a job, the algorithm learns the increase on the load and the cost of
assigning a unit of such job to a machine. Jobs cannot be suspended and/or re-
assigned. The authors model a greedy algorithm that assigns a job so that the
cost is minimized as solving a mathematical program with constraints arriving
online. They show a competitive ratio of αα with respect to the solution of the
dual program which is a lower bound for the optimal. References to previous
work on the particular case of minimizing energy with deadlines can be found
in this paper.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost
functions of the flow time, with the only restriction that such function is non-
decreasing [21]. In their model, a collection of jobs, each characterized by a
release time, a processing work, and a weight, must be processed by a sin-
gle server whose speed is variable. A job can be suspended and restarted later
without penalty. The authors show that HDF is (2 + ε)-speed O(1)-competitive
against the optimal algorithm on a unit speed-processor, for all non-decreasing
cost functions of the flow time. Furthermore, they also show that this ratio can-
not be improved significantly proving impossibility results if the cost function
is not uniform among jobs or the speed cannot be significantly increased.

Similar cost functions have been considered for the minimum cost network-
design problem. In this problem packets have to be routed through a (possibly
multihop) network of speed scalable routers. There is a cost associated to assign-
ing a packet to a link and to the speed or load of the router. The goal is to route all
packets minimizing the aggregated cost. In [8] and [9] the authors show offline
algorithms for this problem that achieve polynomial and poly-logarithmic ap-
proximation, respectively, where the cost function is the α-th power of the link
load plus a link assignment cost, for any constant α > 1. The same problem
and cost function is studied in [19] (the assignment cost is omitted for clarity).
As for the scheduling problem, the authors model a greedy algorithm as solving
a mathematical program with constraints arriving online. They show a competi-
tive ratio of αα with respect to the solution of the dual program which is a lower
bound for the optimal.

The experimental work related to VMA is vast and its detailed overview is
out of the scope of this paper. Some of this work does not minimize energy [15,
24, 27] or it applies to a model different than ours (VM migration [29, 30],
knowledge of future load [25, 30], feasibility of allocation [12], multilevel ar-
chitecture [26, 29, 22], interconnected VMs [13], etc.). On the other hand, some
of the experimental work where minimization of energy is evaluated focus on a
more restrictive cost function [33, 22, 34].

In [22], for an energy cost model that is linear, the authors evaluate ex-
perimentally the allocation of VMs to clusters following 7 placement policies,
some of them included in popular cloud platforms [4, 3]. Namely, Round Robin,
Striping, Packing, Load Balancing (free CPU count), Load Balancing (free CPU
ratio), Watts per Core, Cost per Core. We adapt 5 of these policies (defined later)
to our model and cost function for the purpose of simulations.

In [30], the authors focus on an energy-efficient VM placement problem
with two requirements: CPU and disk. These requirements are assumed to change
dynamically and the goal is to consolidate loads among servers, possibly using
migration at no cost. In our model VMs assignment is based on a CPU require-

ment that does not change and migration is not allowed. Should any other re-
source be the dominating energy cost, the same results apply for that require-
ment. Also, if loads change and migration is free, an offline algorithm can be
used each time that a load changes or a new VM arrives. In [30] it is shown
experimentally that energy-efficient VMA does not merely reduce to a packing
problem. That is, to minimize the number of PMs used even if their load is close
to their maximum capacity. For our model, we show here that the optimal load
of a given server is a function only of the fixed cost of being active (b) and the
exponential rate of power increase on the load (α). That is, the optimal load is
not related to the maximum capacity of a PM.

1.3 Our Results

In this work, we study offline and online versions of the VMA problem. First,
using a reduction from 3-PARTITION, we show that VMA is NP-hard in the
strong sense, even if α is constant. This result implies that the VMA problem
does not have a fully polynomial-time approximation scheme (FPTAS), even
if α is constant. Then, we present a VMA algorithm that achieves an approx-
imation ratio of (1 + ε)α with respect to the power consumption of an opti-
mal assignment, for any constant ε > 0. We also show a O(min(n,m)(n +
g(1/ε) · logO(1) n)) upper bound on the running time of such algorithm, where
g(·) is some function that grows at least exponentially. We observe that, when
α is constant as in any realistic power consumption model, this algorithm is a
polynomial-time algorithmic scheme (PTAS) for the VMA problem. Hence, for
constant α, we fully characterize the offline version of the VMA problem, since
a PTAS is presented and no FPTAS may exist.

Then we move on to online VMA algorithms. That is, we assume that VMs
are revealed to the algorithm one by one, and the assignments made by the
algorithm are final. First, we show that, when the number of PMs is bounded,
no online VMA algorithm is 3α/(2α+2 + ε)-competitive for any ε > 0, and
we show a stronger lower bound of 3α/2α+1 for a system where only 2 PMs are
available. Moving to upper bounds, for a system with only 2 PMs, we present an
online algorithm that is optimal when `(D) ≤ (b/(2α − 2))1/α and achieves a
competitive ratio of at most max{2, (3/2)α−1} otherwise. Finally, for a system
where PMs may be added on demand, we present a VMA online algorithm that,
if no VM di has `(di) < x∗ (where x∗ = (b/(α− 1))1/α) achieves optimal
competitive ratio 1. Otherwise, it achieves a 2α−1 + x∗/(

∑
di:`(di)<x∗

`(di))
competitive ratio.

The proofs omitted from this document can be found in [10].

2 Preliminaries

The following observations will be used in the analysis. We call power rate the
power consumed per unit of load in a PM. Let x be the load of a PM. Then, its
power rate is computed as f(x)/x. The load at which the power rate is mini-
mized, denoted x∗, is the optimal load, and the corresponding rate is the optimal
power rate ρ∗ = f(x∗)/x∗. Using calculus we get:

Observation 1 The optimal load is:

x∗ = (b/(α− 1))1/α .

Equivalently, for any x 6= x∗, f(x)/x > ρ∗.

Lemma 1. Given an instance of the VMA problem with a set of VMs D =
{d1, . . . , dn}, any solution π = {A1, . . . , Am} where

∑
d∈Ai d 6= x∗ for some

i ∈ [1,m], satisfies

P (π) > ρ∗`(D) = ρ∗
∑
d∈D

`(d).

Proof. The total cost of π is
∑

i∈[1,m] f(`(Ai)) which, from Observation 1, is
at least ∑

i∈[1,m]:Ai 6=∅

`(Ai)ρ∗ = ρ∗
∑

i∈[1,m]:Ai 6=∅

∑
d∈Ai

`(d) = ρ∗
∑
d∈D

`(d).

Corollary 1. Given an instance of the VMA problem with VMsD = {d1, . . . , dn},
any solution π satisfies P (π) ≥ ρ∗

∑n
i=1 `(di).

3 Off-line Algorithms

In this section we show that the VMA problem is NP-hard in the strong sense.
Then, we show that there are algorithms to approximate the optimal off-line so-
lution of VMA. Furthermore, if α is a constant there is a PTAS for the problem.

Theorem 1. VMA is strongly NP-hard, even if α is constant.

It is known that strongly NP-hard problems cannot have a fully polynomial-
time approximation scheme (FPTAS) [32], we have the following corollary.

Corollary 2. VMA does not have a fully polynomial-time approximation scheme
(FPTAS), even if α is constant.

Observe that the problem remains NP-hard whenm is fixed to 2. The proof uses
a simple reduction from the partition problem, in which it is decided whether a
multiset of integers can be partitioned into two subsets of equal sum.

Theorem 2. For every constant ε > 0, there is an algorithm for the VMA prob-
lem with approximation ratio (1+ ε)α and time complexity O(min(n,m) · (n+
g(1/ε) · logO(1) n)), for some function g(·) that grows at least exponentially.

When α is a constant, this result provides a PTAS for the VMA problem,
by simply choosing for each constant δ > 0 an appropriate constant ε such that
1 + δ = (1 + ε)α, and using this new value in the above theorem.

Corollary 3. When α is constant, there is a polynomial-time approximation
scheme (PTAS) for the VMA problem.

4 Competitiveness of Online Algorithms

In this section we study the online version of VMA. First, we prove a lower
bound on the competitiveness of any online algorithm in a system with a bounded
number m of PMs, and a stronger lower bound for m = 2. Later, we present
algorithms with bounded competitiveness for systems with 2 PMs and with un-
bounded number of PMs.

4.1 Lower Bounds

We show now that for m PMs there is a general lower bound on the competitive
ratio of 3α/(2α+2 + ε), for any ε > 0. Let us first give the following lemmas.

Lemma 2. Let x∗ < `1 ≤ `2. Then f(`1 + `2) > f(`1) + f(`2).

From this lemma, it follows that if a PM has at least 2 VMs, each with
load larger than x∗, and there are unused PMs, the power consumption can be
reduced by moving one VM to an unused PM. When this is done in a given
partition we say that we are using Lemma 2.

Lemma 3. Let L > 0 and `2 < `1 ≤ L/2. Then f(`1) + f(L− `1) < f(`2) +
f(L− `2).

This lemma carries the intuition that balancing the load among the used PMs
as much as possible reduces the power consumption. The following theorem
gives a lower bound on the competitiveness of any algorithm.

Theorem 3. When the number of PMs is m (bounded), no online VMA algo-
rithm can achieve a competitive ratio of 3α/(2α+2 + ε), for any ε > 0.

The next result shows that the above lower bound can be made stronger for
m = 2.

Theorem 4. There is no online VMA algorithm that achieves a competitive ra-
tio of 3α/2α+1, if m = 2.

4.2 Upper Bounds

In this section we present first a VMA algorithm (detailed in Algorithm 1) and
show an upper bound on its approximation ratio. The algorithm is online, that
is, the VMs are revealed to the algorithm one by one. A1 and A2 are the sets of
VMs assigned to PMs s1 and s2, respectively, at any given time.

Algorithm 1: Online VMA algorithm for m = 2.
for each VM di do

if `(di) + `(A1) ≤ (b/(2α − 2))1/α or `(A1) ≤ `(A2) then
di is assigned to s1

else
di is assigned to s2

We prove the approximation ratio of Algorithm 1 in the following theorem.

Theorem 5. For a system where m = 2, there exists an online VMA algorithm
that achieves the following competitive ratios.

ρ = 1, for `(D) ≤
(

b
2α−2

)1/α
,

ρ ≤ max

{
2,
(

3
2

)α−1
}
, for `(D) >

(
b

2α−2

)1/α
.

We introduce now an online VMA algorithm for the case when the number
of PMs is unbounded. The algorithm uses the load of the new revealed VM in
order to decide the PM where it is assigned. If the load of the revealed VM is
larger than x∗, the algorithm assigns this VM to a new PM without any other
VM already assigned to it. Otherwise, the algorithm schedules the revealed VM
to the most loaded PM whose current load is smaller than x∗. Note that, since
the case under consideration assumes the existence of an unbounded number of
PMs, there always exists at least one PM whose current load is smaller than x∗.
A detailed description of this algorithm is shown in Algorithm 2. As before, Aj
is the set of VMs assigned to PM sj at a given time.

We prove the approximation ratio of Algorithm 2 in the following theorem.

Algorithm 2: Online VMA algorithm for unbounded number of PMs.
for each VM di do

if `(di) ≥ x∗ then
di is assigned to a new PM

else
di is assigned to the PM sj such that `(Ak) ≤ `(Aj) < x∗ for all k

Theorem 6. For a system with unbounded number of PMs, Algorithm 2 achieves
a competitive ratio of 1 if no VM di has `(di) < x∗, and of 2α−1+x∗

/∑
di:`(di)<x∗

`(di),
otherwise.

5 Experimental Evaluation

In this section we experimentally evaluate the performance of the online VMA
algorithm we proposed in Section 4, extended to be able to handle a bounded
number of PMs. Additionally, we compare it with other online placement algo-
rithms.

5.1 Experimental Setup

The online algorithm whose performance is evaluated here, which we call Algo-
rithm VMA, behaves exactly as Algorithm 2 if possible. Otherwise, a new VM
is assigned to the least loaded PM.

The performance of Algorithm VMA is first compared with a lower bound,
denoted LBVMA, that is obtained as follows. The input VMs are sorted in non-
increasing order of their loads. Then, using this order, as many VMs as possible
with load at least x∗ are assigned to different PMs. Let L be total load of the
VMs still unassigned. If there are at least bL/x∗c PMs still unused, LBVMA
uses exactly bL/x∗c PMs. Otherwise all PMs are used by LBVMA. Finally, the
load L is assigned among all used PMs as if it could be infinitely divided (i.e.,
as a fluid), using a water-filling algorithm [14].

Algorithm VMA is also compared with the following algorithms proposed
in the literature.

– Random Placement (RP) [26]: It chooses a PM for each VM uniformly at
random.

– Next Fit (NF) [26]: Starting initially at the first PM, each new VM is as-
signed to the next PM after the latest PM to which a VM was assigned (in a
cyclic fashion).

– Least Full First (LFF) [26]: Each new VM will be assigned to (one of) the
least loaded PM in the system.

(a) Trace A (synthetic traces) (b) Trace B (Google traces)

Fig. 1. VMs load distributions used in the evaluations.

– Striping (S) [22]: Each new VM is assigned to (one of the) PM with the
smallest number of VMs assigned.

– Watts per Core (WC) [22]: Assign each new VM to the PM whose power
would suffer the smallest increase.

The behavior of the aforementioned algorithms is evaluated by inputting
two sets of traces, synthetic and real, shown in Figure 1. We call them Trace A
and Trace B, respectively. Trace A is generated by randomly choosing the load
of each VM following a power-law distribution with exponential cutoff (power-
law distributions are similar to Zipf and Pareto distribution, cf. [6, 28]), which
has been chosen so 100 is the maximum load of a VM. We select 10000 integer
loads randomly using this distribution. This leads us to the VM load distribution
shown in Figure 1(a).

Trace B is obtained from public Google traces [20]. We extract all the tasks
from these traces, assuming that each task is an independent VM. The VMs
(tasks) are sorted by the time at which they join the system. The load of a VM is
the maximum CPU load of the task. The trace then contains 124885 VMs with
loads varying between 0.31 and 12.5. The resulting VM load distribution can be
seen in Figure 1(b).

Each execution of the algorithms is run with a fixed number of PMs. This
number of PMs increases from 1 to the number of VMs in the trace being used.
This allows us to see how the power consumption and the algorithms behavior
evolve when the available PMs in the system vary.

We run simulations for all values of α ∈ {1.5, 2, 3}, and x∗ ∈ {1, 3, 10, 30,
100, 300, 1000, 10000}, for both traces and for all algorithms (including the
lower bound). (Due to space restrictions we only present results for x∗ ∈ {30,
100, 300}, which are the most interesting.) With these two parameters, b is also

Fig. 2. Comparing the power consumed by VMA with the lower bound LBVMA for x∗ = 30
and α = {1.5, 2, 3}.

characterized and we can also study different situations, the cases in which the
VM loads are larger, similar or smaller than x∗.

5.2 Experimental Results

The results obtained are presented as graphs in which the power consumed is
represented as a function of the number of PMs used. We start by using Trace
A, comparing the resulting power consumed using our algorithm with the lower
bound on the optimal power consumption given by LBVMA. This comparison
is run for a fixed value of x∗ (x∗ = 30) and the different values of α considered,
1.5, 2, and 3. The results are shown in Figure 2. As it can be observed, there
is no qualitative difference in the solutions when α varies. (Similar results are
obtained with other values of x∗ and with Trace B.) As can be seen, the power
consumed by the partitions found with VMA is very close to the lower bound
obtained with LBVMA. This shows that the performance of VMA is close to
optimal.

We then compare both VMA and LBVMA with algorithms RP, LFF, NF,
WC and S. Figure 3 shows the result of running these algorithms with Trace A
and Trace B, for α = 2 and different values of x∗ (x∗ = {30, 100, 1000}).

Observe that with Trace A and small values of x∗, like x∗ = 30, all the
algorithms present similar results, and VMA is not showing a significantly better
performance than the rest. This is so because, either explicitly or implicitly,
when x∗ is small in relation with the loads in the system, using a new PM is
cheap, and all the algorithms (including VMA) essentially distribute the load
evenly among the available PMs.

(a) TA x∗ = 30 (b) TB x∗ = 30

(c) TA x∗ = 100 (d) TB x∗ = 100

(e) TA x∗ = 300 (f) TB x∗ = 300

Fig. 3. Performance of the algorithms for Trace A and Trace B, α = 2 and different values of x∗.

However, Figures 3(b) and 3(c) already shows a change in the behavior due
to the smaller size of the loads in Trace B, on the one hand, and the higher value
of x∗ on the other. In these cases, WC and VMA, that have been designed to
be energy-aware, take an advantage with respect to the other algorithms. In fact,
both algorithms reach a stable number of PMs that is enough to place all the
available load, not requiring new PMs and, hence, not paying for the switching
on cost of additional PMs (characterized by b).

6 Conclusions and Open Problems

In this paper we have studied a particular case of the generalized assignment
problem with applications to Cloud Computing. We have considered the prob-
lem of assigning virtual machines (VMs) to physical machines (PMs) so that
the power consumption is minimized, a problem that we call virtual machine
assignment (VMA). In our theoretical analysis we have shown that the VMA
problem is NP-hard, we have shown a PTAS that solves VMA offline, and we
have proved upper and lower bounds on the competitive ratio of VMA online
algorithms. We have also carried out extensive simulations using synthetic data
as well as real world inputs such as Google cluster data. The simulations show
that in practice the performance of our online algorithms is very close to a lower
bound on the offline optimal, and better than known techniques currently used.

In our model we have assumed that customers specify a CPU requirement
that must be guaranteed and will not change, that migration of VMs among PMs
is not feasible, and that the service provider may increase the number of PMs
at a cost. To the best of our knowledge, this model has not been studied previ-
ously from a theoretical standpoint. Other models in the experimental literature
include more client requirements (such as speed, disk, memory, etc.), migration
of VMs for free, dynamic change of loads, and/or different cost functions. Being
parametric, our energy cost function generalizes other functions considered in
the literature. For settings where the dominating cost is other than the CPU load,
our results still apply tuning appropriately the cost function. If the migration of
VMs is for free, our results also still apply running the offline approximation
algorithm each time a load changes or a new VM arrives. We leave for future
work the consideration of migration of VMs at a cost, and the combination of
various resource requirements, none of which is a bottleneck.

References

1. Amazon web services. http://aws.amazon.com. Accessed August 27, 2012.
2. Citrix. http://www.citrix.com. Accessed August 27, 2012.
3. Eucalyptus. http://www.eucalyptus.com/. Accessed January 20th, 2013.
4. Opennebula. http://opennebula.org/. Accessed January 20th, 2013.
5. Rackspace. http://www.rackspace.com. Accessed August 27, 2012.
6. L. A. Adamic and B. A. Huberman. Zipf?s law and the internet. Glottometrics, 3(1):143–

150, 2002.
7. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In

SODA, pages 493–500, 1997.
8. M. Andrews, A. F. Anta, L. Zhang, and W. Zhao. Routing for power minimization in the

speed scaling model. IEEE/ACM Trans. Netw., 20(1):285–294, 2012.
9. M. Andrews, S. Antonakopoulos, and L. Zhang. Minimum-cost network design with

(dis)economies of scale. In FOCS, pages 585–592, 2010.

10. J. Arjona Aroca, A. Fernández Anta, M. A. Mosteiro, and C. Thraves. Power-efficient As-
signment of Virtual Machines to Physical Machines. ArXiv e-prints, Apr. 2013.

11. N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In
SODA, pages 693–701, 2009.

12. U. Bellur, C. S. Rao, and M. K. SD. Optimal placement algorithms for virtual machines.
arXiv:1011.5064 (http://arxiv.org/abs/1011.5064), 2010.

13. J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer. Energy
efficient virtual network embedding. IEEE Communications Letters, 16(5):756–759, 2012.

14. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004.

15. M. Cardosa, A. Singh, H. Pucha, and A. Chandra. Exploiting spatio-temporal tradeoffs for
energy-aware mapreduce in the cloud. In CLOUD, pages 251 –258, 2011.

16. A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related to
storage allocation. SIAM J. Comput., 4(3):249–263, 1975.

17. S.-C. Chen, C.-C. Lee, H.-Y. Chang, K.-C. Lai, K.-C. Li, and C. Rong. Energy-aware task
consolidation technique for cloud computing. In CLOUD, pages 115–121, 2011.

18. R. A. Cody and E. G. C. Jr. Record allocation for minimizing expected retrieval costs on
drum-like storage devices. J. ACM, 23(1):103–115, 1976.

19. A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual for non-linear optimization
with applications to speed scaling. arXiv:1109.5931v1 [cs.DS] (http://arxiv.org/
abs/1109.5931), 2011.

20. J. L. Hellerstein. Google cluster data. Google research blog, Jan. 2010. Posted at http://
googleresearch.blogspot.com/2010/01/google-cluster-data.html.

21. S. Im, B. Moseley, and K. Pruhs. Online scheduling with general cost functions. In SODA,
pages 1254–1265, 2012.

22. R. Jansen and P. Brenner. Energy efficient virtual machine allocation in the cloud. In IGCC,
pages 1–8, 2011.

23. N. Liu, Z. Dong, and R. Rojas-Cessa. Task and server assignment for reduction of energy
consumption in datacenters. In NCA, pages 171–174, 2012.

24. F. Machida, M. Kawato, and Y. Maeno. Redundant virtual machine placement for fault-
tolerant consolidated server clusters. In NOMS, pages 32 –39, 2010.

25. C. Mark, D. Niyato, and T. Chen-Khong. Evolutionary optimal virtual machine placement
and demand forecaster for cloud computing. In AINA, pages 348 –355, 2011.

26. K. Mills, J. Filliben, and C. Dabrowski. Comparing vm-placement algorithms for on-demand
clouds. In CLOUD, pages 91–98, 2011.

27. M. Mishra and A. Sahoo. On theory of vm placement: Anomalies in existing methodologies
and their mitigation using a novel vector based approach. In CLOUD, pages 275 –282, 2011.

28. M. E. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics,
46(5):323–351, 2005.

29. H. Nguyen Van, F. Dang Tran, and J.-M. Menaud. Autonomic virtual resource management
for service hosting platforms. In CLOUD, pages 1–8, 2009.

30. S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for cloud computing. In
HotPower, pages 10–10, 2008.

31. R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-efficient scheduling heuris-
tics for deadline constrained workloads on hybrid clouds. In CLOUD, pages 320–327, 2011.

32. V. V. Vazirani. Approximation Algorithms. Springer, Mar. 2004.
33. H. Viswanathan, E. Lee, I. Rodero, D. Pompili, M. Parashar, and M. Gamell. Energy-aware

application-centric vm allocation for hpc workloads. In IPDPSW, pages 890 –897, 2011.
34. J. Xu and J. Fortes. A multi-objective approach to virtual machine management in datacen-

ters. In ICAC, pages 225–234, 2011.

