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In this paper, contention resolution among k contenders on a multiple-access channel is
explored. The problem studied has been modeled as a k-Selection in Radio Networks, in
which every contender has to have exclusive access at least once to a shared communica-
tion channel. The randomized adaptive protocol presented shows that, for a probability
of error 2ε, all the contenders get access to the channel in time (e+1+ξ)k+O(log2(1/ε)),

where ε ≤ 1/(n+1), ξ > 0 is any constant arbitrarily close to 0, and n is the total number
of potential contenders. The above time complexity is asymptotically optimal for any
significant ε. The protocol works even if the number of contenders k is unknown and
collisions cannot be detected.
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1. Introduction

A recurrent question, in settings where a resource must be shared among many
contenders, is how to make that resource available to all of them. The problem
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is particularly challenging if not even the number of contenders is known. The
broad spectrum of settings where answers to such a question are useful makes
its study a fundamental task. An example of such contention is the problem of
broadcasting information in a multiple-access channel. A multiple-access channel is
a synchronous system that allows a message to be delivered to many recipients at
the same time using a channel of communication but, due to the shared nature of the
channel, the simultaneous introduction of messages from multiple sources produce a
conflict that precludes any message from being delivered to any recipient. In Radio
Networks,a one of the instances of such a question is the problem known in the
literature [3] as Selection. In its general version, the k-Selection problem [11], also
known as all-broadcast, is solved when an unknown size-k subset of n network nodes
have been able to access a unique shared channel of communication, each of them
at least once. The k-Selection problem in Radio Networks and related problems
have been well-studied for settings where a tight upper bound on k is known. In
this paper, a randomized adaptive protocol for k-Selection in Radio Networks is
presented, assuming that such a knowledge is not available, the arrival of messages
is batched, and conflicts to access the channel cannot be detected by all nodes. To
our knowledge, this is the first k-Selection protocol in the Radio Networks literature
that works in such conditions and it is asymptotically optimal for any sensible error-
probability bound (up to inverse exponential in k). This protocol improves over
previous work in adversarial packet contention-resolution thanks to the adaptive
nature of the protocol and the knowledge of n. Given that the error probability
is parametrized, this protocol can be also applied to solve k-Selection in multiple
neighborhoods of a multi-hop Radio Network.

1.1. Notation and model

Most of the following assumptions and notation are folklore in the Radio Networks
literature. For details and motivation, see the survey of Chlebus [3]. We study
the k-Selection problem in a Radio Network comprised of n labeled stations called
nodes. Each node is assumed to be potentially reachable from any other node in one
communication step, hence, the network is characterized as single-hop or one-hop
indistinctively. Before running the protocol, nodes have no information besides n

and their own label, which is assumed to be unique but arbitrary.b Time is supposed
to be slotted in communication steps. Assuming that the computation time-cost
is negligible in comparison with the communication time-cost, time efficiency is
studied in terms of communication steps only. The piece of information assigned
to a node in order to deliver it to other nodes is called a message. The assignment

aAs pointed out in [3], the historical developments justify the use of Radio Network to refer to
any communication network where the channel is contended, even if radio communication is not
actually used.
bNotice that our protocol does not make any use of the identity of a message originator. Thus, it
can be used even in settings where nodes are not labeled or labels are not unique.
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of a message is due to an external agent and such an event is called a message
arrival. Communication among nodes is carried out by means of radio broadcast
on a shared channel. If exactly one node transmits at a communication step, such
a transmission is called successful or non-colliding, we say that the message was
delivered, and all other nodes receive such a message. If more than one message is
transmitted at the same time, a collision occurs, the messages are garbled, and nodes
only receive interference noise. If no message is transmitted in a communication
step, nodes receive only background noise. In this work, nodes cannot distinguish
between interference noise and background noise, thus, the channel is called without
collision detection. Each node is in one of two states, active if it holds a message to
deliver, or idle otherwise. In contrast with oblivious protocols, where the sequence of
transmissions of a node does not depend on the transmissions received, the adaptive
protocol presented in this paper exploits the information implicit on the occurrence
of a successful transmission. In the randomized protocol presented here all active
nodes use the same probability in the same communication step, a class of protocols
usually called fair. Therefore, it is also a uniform protocol, i.e., all active nodes use
the same protocol. As in for instance [1, 7, 11], we assume that all the k messages
arrive in a batch, i.e. in the same communication step, a problem usually called
static k-Selection,c and that each node becomes idle upon delivering its message.

1.2. Problem definition

Given a Radio Network where a subset K of the set of n network nodes, such
that |K| = k, are activated by message arrivals, the k-Selection problem is solved
when each node in K has delivered its message. The definition given pertains to
the general version of the problem where messages may arrive at different times,
although in this paper, we study only simultaneous, or batched, arrivals.

1.3. Related work

Regarding deterministic solutions, the k-Selection problem was shown to be in
O(k log(n/k)) already in the 70’s by giving adaptive protocols that make use of
collision detection [2, 8, 14]. In all these results the algorithmic technique, known
as tree algorithms, relies on modeling the protocol as a complete binary tree where
the messages are placed at the leaves. Later, Greenberg and Winograd [6] showed
a lower bound for that class of protocols of Ω(k logk n). Regarding oblivious algo-
rithms, Komlòs and Greenberg [10] showed the existence of O(k log(n/k)) solutions
even without collision detection but requiring knowledge of k and n. More recently,
Clementi, Monti, and Silvestri [4] showed a lower bound of Ω(k log(n/k)), which also
holds for adaptive algorithms if collision detection is not available. In [11], Kowalski
presented the construction of an oblivious deterministic protocol that, using the

cA dynamic counterpart where messages arrive at different times was also studied [11].
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explicit selectors of Indyk [9], gives a O(k polylog n) upper bound without collision
detection.

In the following results, availability of collision detection is assumed. Martel
presented in [13] a randomized adaptive protocol for k-Selection that works in
O(k + log n) time in expectation.d As argued by Kowalski in [11], this protocol can
be improved to O(k+log log n) in expectation using Willard’s expected O(log log n)
selection protocol of [17]. In the same paper, Willard shows that, for any given pro-
tocol, there exists a choice of k ≤ n such that selection takes Ω(log log n) expected
time for the class of fair selection protocols. For the case in which n is not known, in
the same paper a O(log log k) expected time selection protocol is described, again,
making use of collision detection. If collision detection is not available, using the
techniques of Kushilevitz and Mansour in [12], it can be shown that, for any given
protocol, there exists a choice of k ≤ n such that Ω(log n) is a lower bound in the
expected time to get even the first message delivered.

A frequent challenging difficulty to overcome in resolving collisions is to deter-
mine which is the best probability of transmission to be used by the contenders when
their number is unknown. The method of choice is then to increase or decrease such
probability based on the success or failure of successive trials. When the probabil-
ity of transmission is increased it is said that a back-on strategy is used, whereas
back-off is the term used when such probability is decreased. A combination of
both strategies is usually called back-on/back-off. Monotonic back-off strategies for
contention resolution of batched arrivals of k packets on simple multiple access
channels, a problem that can be seen as k-Selection, have been analyzed in [1].
The best strategy shown is the so-called loglog-iterated back-off with a makespan
in Θ(k log log k/ log log log k) with probability at least 1 − 1/kc, c > 0, which does
not use any knowledge of k or n.

Regarding related problems, extending previous work on tree algorithms, Green-
berg and Leiserson [7] presented randomized routing strategies in fat-trees for
bounded number of messages. Choosing appropriate constant capacities for the
edges of the fat-tree, the problem could be seen as k-Selection. However, that choice
implies a logarithmic congestion parameter which yields an overall O(k polylog n)
time. In [5], Gerèb-Graus and Tsantilas presented an algorithm that solves the
problem of realizing arbitrary h-relations in an n-node network, with probability at
least 1− 1/nc, c > 0, in Θ(h+ log n log log n) steps. In an h-relation, each processor
is the source as well as the destination of h messages. Making h = k this protocol
can be used to solve k-Selection. However, it requires that nodes know h.

1.4. Results and outline

In this paper, a randomized adaptive protocol for k-Selection, in a one-hop Radio
Network without collision detection, that does not require knowledge of the num-
ber of contenders k, is presented. Assuming that ε ≤ 1/(n + 1), the protocol

dThrougout this paper, log means log2 unless otherwise stated.



January 8, 2011 10:18 WSPC/S1793-8309 257-DMAA
S1793830910000796

k-Selection in Radio Networks 449

is shown to solve the problem in (e + 1 + ξ)k + O(log2(1/ε)) communication
steps, where ξ > 0 is any constant arbitrarily close to 0 with probability at
least 1 − 2ε. Given that the error probability is parametric, this protocol can be
applied to multiple neighborhoods of a multi-hop Radio Network, adjusting the
error probability in each one-hop neighborhood appropriately. To our knowledge,
O(k log log k/log log log k) [1] is the best upper bound in the literature for a proto-
col suitable to solve k-Selection in Radio Networks (although they propose it for
packet contention resolution), that works without knowledge of k, under batched
arrivals, and without collision detection. By exploiting back-on/back-off and the
knowledge of n, our protocol improves their time complexity. Given that k is a
lower bound for this problem, the protocol is optimal (modulo a small constant
factor) if ε ∈ Ω(2−

√
k). In Sec. 2 the details of the protocol are presented and they

are analyzed in Sec. 3.

2. Protocol

The protocol comprises two different algorithms. Each of them is particularly suited
for one of two scenarios, depending on the number of messages left to deliver.
The algorithm called BT solves the problem for the case when that number is
below a threshold (that will be defined later). The algorithm called AT is suited
to reduce that number from the initial k to a value below that threshold. The
BT algorithm uses the well-known technique of repeating transmissions with the
same appropriately-suited probability until the problem is solved. The AT algo-
rithm on the other hand is adaptive by repeatedly increasing an estimation of the
messages left and decreasing such an estimation by roughly one each time a message
is delivered. (Even if that successful transmission is due to the BT algorithm.) An
illustration of the estimation progress is depicted in Fig. 1. Further details can be
seen in Algorithm 1. Both algorithms are executed interleaving their communication
steps (see Task 1 in Algorithm 1). For clarity, each communication step is referred
to by using the name of the algorithm executed at that step. The following notation
used in the algorithm is defined for clarity: β � e+ ξβ , δ � 1+ ξδ, τ � 300β ln(1/ε),
ε � error probability, 0 < ξδ < 1, 0 < ξβ < 0.27 and 0 < ξt ≤ 1/2 are constants
arbitrarily close to 0, and 1/ξt ∈ N.

Fig. 1. Illustration of estimate progress.
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Algorithm 1: Pseudocode for node x.
upon message arrival do1

t← τ2

eκ← τ3

start tasks 1, 2 and 34

Task 15

foreach communication-step = 1, 2, . . . do6

if communication-step ≡ 1 (mod 1/ξt) then // BT-step7

transmit 〈x, message〉 with prob 1/τ8

else // AT-step9

transmit 〈x, message〉 with prob 1/eκ10

t← t− 111

if t ≤ 0 then12

t← τ13

eκ← eκ + τ14

Task 215

upon reception from other node do16

eκ← max{eκ− δ, τ}17

t← t + β18

Task 319

upon message delivery stop20

3. Analysis

For clarity, each of the algorithms comprising the protocol are first analyzed
separately and later put together in the main theorem. Consider first the AT
algorithm. (Refer to Algorithm 1.) Let κ̃ be called the density estimator. Let a
round be the sequence of AT-steps between increasings of the density estimator
(Line 14). Let the rounds be numbered as r ∈ {1, 2, . . .} and the AT-steps within
a round as t ∈ {1, 2, . . .} (e.g. round 1 is the sequence of AT-steps from initializa-
tion until Line 14 of the algorithm is executed for the first time). Let κr,t, called
the density, be the number of messages not delivered yet (i.e. the number of active
nodes) at the beginning of AT-step t of round r. Let κ̃r,t be the density estimator
used at the AT-step t of round r. Let Xr,t be an indicator random variable such
that, Xr,t = 1 if a message is delivered at the AT-step t of round r, and Xr,t = 0
otherwise. Then, Pr(Xr,t = 1) = (κr,t/κ̃r,t)(1 − 1/κ̃r,t)κr,t−1. Also, for a round r,
let the number of messages delivered in the interval of AT-steps [1, t) of r, includ-
ing those delivered in BT steps, be σr,t. The following intermediate results will be
useful. First, we state the following useful fact.

Fact 3.1 ([15, §2.68]).

ex/(1+x) ≤ 1 + x ≤ ex, 0 < |x| < 1.

Lemma 3.2. For any round r where κ̃r,1 ≤ κr,1 − γ, γ ≥ δ(2 − δ)/(δ − 1) ≥ 0,

P r(Xr,t = 1) is monotonically non-increasing with respect to t for δ+1 < κ̃r,t ≤ κr,t,

and δ < (κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1).
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Proof. We want to show conditions such that for any t in round r, Pr(Xr,t =
1) ≥ Pr(Xr,t+1 = 1). If κr,t = κr,t+1 the claim holds trivially. Then, let us assume
instead that κr,t > κr,t+1. We want to show that

κr,t

κ̃r,t

(
1 − 1

κ̃r,t

)κr,t−1

≥ κr,t+1

κ̃r,t+1

(
1 − 1

κ̃r,t+1

)κr,t+1−1

.

Due to the BT-step between two consecutive AT-steps, at most two messages are
delivered in the interval [t, t + 1) of r. Thus, replacing appropriately, we want to
show that the following inequalities hold.

κr,t

κ̃r,t

(
1 − 1

κ̃r,t

)κr,t−1

≥ κr,t − 1
κ̃r,t − δ

(
1 − 1

κ̃r,t − δ

)κr,t−2

, (3.1)

κr,t

κ̃r,t

(
1 − 1

κ̃r,t

)κr,t−1

≥ κr,t − 2
κ̃r,t − 2δ

(
1 − 1

κ̃r,t − 2δ

)κr,t−3

. (3.2)

Reordering (3.1),

κ̃r,t − δ − 1
κ̃r,t

(
κ̃r,t − 1

κ̃r,t

κ̃r,t − δ

κ̃r,t − δ − 1

)κr,t−1

≥ κr,t − 1
κr,t

. (3.3)

Using calculus, it can be seen that the left-hand side of (3.3) is monotonically non-
increasing for δ + 1 < κ̃r,t ≤ κr,t. The details are omitted for brevity. Then, given
that κ̃r,t = κ̃r,1 − σr,t ≤ κr,1 − σr,t − γ ≤ κr,t − γ, it is enough to show

κr,t

κr,t − 1
· κr,t − γ − δ − 1

κr,t − γ
·
(

κr,t − γ − 1
κr,t − γ

κr,t − γ − δ

κr,t − γ − δ − 1

)κr,t−1

≥ 1. (3.4)

Again using calculus, it can be seen that the left-hand side of Inequality (3.4) is
monotonically non-increasing on κr,t for γ ≥ δ(2 − δ)/(δ − 1) and δ < (κr,t −
γ)(κr,t−γ−1)/(κr,t−γ+1). The details are omitted for brevity. Then, it is enough
to show that, in the limit, the left-hand side of Inequality (3.4) tends to 1, which can
be verified using standard calculus techniques. The details are omitted for brevity.
Using the same techniques, Inequality (3.2) can be shown to hold.

Lemma 3.3. For any round r where κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ ≥ 0 and for
any AT-step t in r such that

σr,t ≤ κr,1
ln β − 1
δ ln β − 1

− (γ + τ + 1) ln β − 1
δ ln β − 1

,

the probability of a successful transmission is at least Pr(Xr,t = 1) ≥ 1/β.
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Proof. We want to show (κr,t/κ̃r,t)(1 − 1/κ̃r,t)κr,t−1 ≥ 1/β. Given that nodes are
active until their message is delivered, it is enough to show

κr,1 − σr,t

κ̃r,1 − δσr,t

(
1 − 1

κ̃r,1 − δσr,t

)κr,1−1−σr,t

≥ 1/β. (3.5)

Using calculus, it can be seen that the left-hand side of Inequality (3.5) is mono-
tonically non-decreasing with respect to κ̃r,1 under the conditions of the lemma.
The details are omitted for brevity. Then, it is enough to prove Inequality (3.5) for
κ̃r,1 = κr,1 − γ − τ .

κr,1 − σr,t

κr,1 − γ − τ − δσr,t
·
(

1 − 1
κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β

(
1 − 1

κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β.

Given that σr,t ≤ κr,1
ln β−1

δ ln β−1 − (γ+τ+1) ln β−1
δ ln β−1 < (κ̃r,1−(γ+τ +1))/δ, using Fact 3.1,

we want

exp
(

κr,1 − σr,t − 1
κr,1 − γ − τ − δσr,t − 1

)
≤ β

κr,1 − σr,t − 1
κr,1 − γ − τ − δσr,t − 1

≤ ln β.

Manipulating the last expression, it can be seen that the lemma holds.

The following lemma, shows the efficiency and correctness of the AT-algorithm.

Lemma 3.4. If the number of messages to deliver is more than

M = 2
δ ln β − 1
ln β − 1

 5∑
j=1

(5/6)j−1τ


+

((δ(2 − δ)/(δ − 1)) + τ + 1) ln β − 1
ln β − 1

∈ O(log(1/ε)),

after running the AT-algorithm for (e+ ξβ +1+ ξδ)k− τ steps, where ξβ and ξδ are
constants arbitrarily close to 0, the number of messages left to deliver is reduced to
at most M with probability at least 1 − ε, for ε ≤ 1/(n + 1).

Proof. Consider the first round r such that

κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ = δ(2 − δ)/(δ − 1). (3.6)

By definition of the AT algorithm, unless the number of messages left to deliver is
reduced to at most M before, such a round exists. To see why, notice in Algorithm 1
that the density estimator is either increased by τ in Line 14, or decreased by
δ in Line 14, or assigned τ in Line 3 or 17. After the first assignment, we have
κ̃1,1 = τ < κ1,1−γ−τ , because κ1,1 > M > 2τ+γ. We show now that condition (3.6)
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of r cannot be satisfied right after decreasing the density estimator in Line 17.
Consider two consecutive steps t′, t′ + 1 of some round r′ such that still κ̃r′,t′ <

κr′,t′ − γ − τ . If, upon a success at step t′ of r′, κ̃r′,t′+1 = τ by the assignment in
Line 17, and κr′,t′+1 − γ − τ ≤ κ̃r′,t′+1, then κr′,t′+1 ≤ τ + γ + τ < M and we are
done. If on the other hand κ̃r′,t′+1 = κ̃r′,t′ − δ by the assignment in Line 17, then
κ̃r′,t′+1 = κ̃r′,t′ − δ < κr′,t′ − γ − τ − δ < κr′,t′+1 − γ − τ . Thus, the only way in
which the density estimator gets inside the aforementioned range is by the increase
in Line 14 and therefore round r exists.

We show now that, before leaving round r, at least τ messages are delivered with
high probability so that in some future round r′′ > r the condition κr′′,1 − γ − τ ≤
κ̃r′′,1 < κr′′,1 − γ holds again. In order to do that, we divide round r in consecutive
sub-rounds of size τ, 5/6τ, (5/6)2τ, . . . . (The fact that a number of steps is an integer
is omitted throughout for clarity.) More specifically, the sub-round S1 is the set of
AT-steps in the interval (0, τ ] and, for i ≥ 2, the sub-round Si is the set of steps
in the interval ((5/6)i−2τ, (5/6)i−1τ ]. Thus, denoting |Si| = τi for all i ≥ 1, it is
τ1 = τ and τi = (5/6)τi−1 for i ≥ 2. For each i ≥ 1, let Yi be a random variable
such that Yi =

∑
t∈Si

Xr,t. Even if no message is delivered, round r still has at
least the sub-round S1 by definition of the algorithm. Given that, according with
Algorithm 1, each message delivered delays the end of round r in β = e + ξβ AT-
steps, for i ≥ 2, the existence of sub-round Si is conditioned on Yi−1 ≥ 5τi−1/(6β).
We show now that with big enough probability round r has 5 sub-rounds and at
least τ messages are delivered. Even if messages are delivered in every step of the
5 sub-rounds (including messages delivered in BT-steps), given that κr,1 > M , the
total number of messages delivered is less than κr,1

ln β−1
δ ln β−1 − (γ+τ+1) ln β−1

δ lnβ−1 because
γ = δ(2 − δ)/(δ − 1). Thus, Lemma 3.3 can be applied and the expected number
of messages delivered in Si is E[Yi] ≥ τi/β. In order to use Lemma 3.2, we verify
first its preconditions. If, at any step t, κr,t ≤ M , we are done. Otherwise, we
know that κr,t ≥ κ̃r,t > δ + 1 and (κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1) > δ.
Given that γ = δ(2 − δ)/(δ − 1), by Lemma 3.2, the random variables Xr,i are
not positively correlated, therefore, in order to bound from below the number of
successful transmissions we can use the following Chernoff-Hoeffding bound [16].
For 0 < ϕ < 1,{

Pr(Y1 ≤ (1 − ϕ)τ1/β) ≤ e−ϕ2τ1/(2β)

Pr(Yi ≤ (1 − ϕ)τi/β|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2τi/(2β), ∀ i : 2 ≤ i ≤ 5.

Taking ϕ = 1/6,{
Pr(Y1 ≤ 5τ1/(6β)) ≤ e−ϕ2300 ln(1/ε)/2

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2(5/6)i−1300 ln(1/ε)/2, ∀ i : 2 ≤ i ≤ 5.{
Pr(Y1 ≤ 5τ1/(6β)) < e−2 ln(1/ε)

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) < e−2 ln(1/ε), ∀ i : 2 ≤ i ≤ 5.
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Given that ε ≤ 1/(n + 1) and k ≤ n, then it holds that ε2 + kε ≤ 1 which
implies that ln(1/ε) ≥ ln(ε+k), therefore e−2 ln(1/ε) ≤ e− ln(ε+k)−ln(1/ε) = ε/(ε+k).
So, more than (5/(6(e + ξβ)))τi messages are delivered in any sub-round Si with
probability at least 1 − ε/(ε + k). Given that each success delays the end of round
r in β = e + ξβ AT-steps, we know that, for 1 ≤ i ≤ 4, sub-round Si+1 exists
with probability at least 1 − ε/(ε + k). If, after any sub-round, the number of
messages left to deliver is at most M , we are done. Otherwise, conditioned on
these events, the total number of messages delivered over the 5 sub-rounds is at
least

∑5
j=1 Yj >

∑5
j=1(5/(6(e + ξβ)))j(e + ξβ)j−1τ = (τ/(e + ξβ))

∑5
j=1(5/6)j > τ

because ξβ < 0.27.
Thus, the same analysis can be repeated over the next round r′′ such that

κr′′,1 − γ − τ ≤ κ̃r′′,1 < κr′′,1 − γ. Unless the number of messages left to deliver is
reduced to at most M before, such a round r′′ exists by the same argument used to
prove the existence of round r. The same analysis is repeated over various rounds
until all messages have been delivered or the number of messages left is at most
M . Then, using conditional probability, the overall probability of success is at least
(1 − ε/(ε + k))k. Using Fact 3.1 twice, that probability is at least 1 − ε.

It remains to be shown the time complexity of the AT algorithm. The difference
between the number of messages to deliver and the density estimator right after ini-
tialization is at most k− τ . This difference is increased with each message delivered
by at most δ − 1 and reduced at the end of each round by τ . Therefore, the total
number of rounds is at most (k−τ +(δ−1)k)/τ = δk/τ −1. Each message delivered
adds only a constant factor β to the total time, whereas the other steps in each round
add up to τ . Therefore, the total time is at most (β+δ)k−τ = (e+ξβ +1+ξδ)k−τ .

The time efficiency and correctness of the BT algorithm is established in the
following lemma. The proof, omitted for brevity, is a straightforward computation
of the probability of some message not being delivered.

Lemma 3.5. If the number of messages left to deliver is at most

M = 2
δ ln β − 1
ln β − 1

 5∑
j=1

(5/6)j−1τ

 +
((δ(2 − δ)/(δ − 1)) + τ + 1) lnβ − 1

ln β − 1
,

there exists a constant c > 0 such that, after running the BT-algorithm for
c log2(1/ε) steps, all messages are delivered with probability at least 1 − ε.

The following theorem establishes the main result.

Theorem 3.6. For any one-hop Radio Network , under the model detailed in Sec. 1,

Algorithm 1 solves the k-selection problem within (e + 1 + ξ)k + O(log2(1/ε)) com-
munication steps, where ξ > 0 is any constant arbitrarily close to 0, with probability
at least 1 − 2ε for ε ≤ 1/(n + 1).
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Proof. From Lemmas 3.4 and 3.5, and the definition of the algorithm, the total
time is (e + 1 + ξδ + ξβ)k/(1 − ξt) + O(log2(1/ε)). Given that ξβ , ξδ, and ξt are
positive constants arbitrarily close to 0, the claim follows.

4. Conclusions and Open Problems

The general problem of enabling an unknown number of contenders the access to
a shared resource was studied in this paper. The results obtained pertain to a
problem of broadcasting information in a multiple-access radio-channel, but they
may be straightforwardly applied to any setting that supports the same model.
The specific problem studied here, k-Selection in Radio Networks, was previously
studied in the literature, but assuming that a tight upper bound on the number
of contenders is known. Thus, a crucial contribution of this paper was the removal
of such assumption, consequently widening the scope of application of the protocol
presented. Furthermore, we have assumed that messages are assigned to all nodes
at the same time, increasing the potential contention for the channel with respect to
scenarios where messages might arrive sparsely. To avoid collisions resulting from
that contention it would be useful to have a mechanism to detect them at each
node. However, we studied a more challenging scenario where only the transmitter
of a message knows if it was the only one to access the channel in a time slot or
not. Nonetheless, even under all these challenging conditions, the bound shown is
asymptotically optimal for any sensible error-probability bound. To the best of our
knowledge, the k-Selection protocol presented in this paper is the first in the Radio
Networks literature that works in such conditions and is optimal.

A number of possible extensions of this work arise as natural questions that are
left for future work. First, different patterns of message arrivals comprising specific
application scenarios, such as Poisson arrivals and others, may also yield optimal
bounds. Also, the protocol presented here improves over previous work in adversarial
packet contention-resolution thanks to the adaptive nature of the protocol and the
knowledge of n. Therefore, the question of how to solve the problem optimally
in settings where nodes do not even know n or the feasibility of a non-adaptive
optimal protocol are also important. Finally, the experimental evaluation of the
protocol presented here, or others resulting from the above mentioned future work,
would be useful for comparison with heuristics currently in use.
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