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Abstract

We design an adaptive modulation scheme to support opportunistic multicast schedul-
ing in wireless networks. Whereas prior work optimizes capacity, we investigate the finite
horizon problem where (once or repeatedly) a fixed number of packets has to be transmitted
to a set of wireless receivers in the shortest amount of time – a common problem, e.g., for
software updates or video multicast.

In the finite horizon problem, the optimum coding and modulation schemes critically
depend on the recent reception history of the receivers and requires a fine balance between
maximizing overall throughput and equalizing individual receiver throughput. We formulate
a dynamic programming algorithm that optimally solves this scheduling problem. We then
develop two low complexity heuristics that perform very close to the optimal solution and
are suitable for practical online scheduling in base stations. We further analyze the perfor-
mance of our algorithms by means of simulation in a wide range of wireless scenarios. They
substantially outperform existing solutions based on throughput maximization or favoring
the user with the worst channel, and we obtain a 25% performance improvement over the
former and a 40% improvement over the latter in a scenario with Rayleigh fading.
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Chapter 1

Introduction

In recent years, multicasting data to mobile users (e.g., for the purpose of video stream-
ing, video conferencing, IPTV, distribution of news and alerts, or application and operating
system updates) has gained in popularity and importance. As an example, the most recent
mobile network architecture LTE includes the evolved Multimedia Broadcast Multicast Ser-
vice (eMBMS) specifically for the purpose of distributing data and mobile TV content in a
cellular network. Since the amount of such traffic in cellular networks is increasing rapidly
and wireless resources are usually scarce and costly, improving the efficiency of wireless
multicast is of high practical relevance.

The most common method for wireless multicasting is broadcasting. The base station
(BS) transmits at some fixed low rate or the rate supported by the worst receiver to ensure
that all receivers are able to receive the multicast transmission. It exploits the wireless broad-
cast gain whereby a single transmission simultaneously serves all receivers. Opportunistic
multicast scheduling (OMS) improves over plain broadcast by exploiting multiuser diver-
sity [1]. Having the BS transmit at a rate higher than the broadcast rate to the subset of
receivers that can receive at this rate improves overall throughput capacity and minimizes
broadcast delay [2]. The intuition is that in an environment with variable channels, receivers
that are not served in the current slot since their channel conditions are bad will be served
in later slots when their conditions improve, and thus over time all receivers will eventually
receive all the data. Hence, there is a tradeoff between multicast gain and multiuser diversity
gain. As an extreme case, the BS may even unicast data to the receiver that supports the
highest rate, serving receivers one-by-one and entirely foregoing the broadcast gain for the
largest possible multiuser diversity gain. Selecting the transmission rate and thus the sub-
set of receivers to multicast to is a complex problem that has been the focus of a range of
OMS algorithms [3]. To simplify the scheduling problem and improve performance when
multicasting data, such algortithms often use erasure codes that ensure that with high proba-
bility, each packet received by a receiver is useful (unless the receiver has decoded all of the
packets that exist in the system) [4], i.e., the identity of the received packets is unimportant.
Fixed rate LDPC [5] or rateless LT or Raptor codes [6] are examples for such erasure codes
that work well in practice and have good performance.

Most of the existing literature considers OMS algorithms for the infinite-horizon multi-
cast problem, where the sender has an infinite number of packets to send and the goal of the
optimization is to maximize throughput capacity. This setting is also a good approximation
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2 CHAPTER 1. INTRODUCTION

for the case of multicasting very large files. In practice, however, multicasting data with a
size on the order of hundreds to several thousands of packets much more common, partic-
ularly for mobile networks. Mobile apps and operating system updates often have a size
of several to several tens of MB, corresponding to thousands of packets of size 1kB. When
streaming video, it is common to apply erasure coding to blocks consisting of one or several
groups of pictures (GOP) [7], where a GOP usually consists of a few hundreds of packets,
depending on the video rate. Since erasure coded blocks can only be decoded after they have
been fully received, coding over larger blocks of video data would unecessarily increase the
playout delay of the video.

In this thesis we therefore consider the finite horizon multicast problem, where a fixed
amount of erasure coded data has to be delivered to a set of wireless receivers. Whenever
the BS transmits a packet, the optimization algorithm has to select a suitable modulation and
coding scheme (MCS). The MCS determines the amount of data transmitted per time slot and
thus the data rate. At the same time, the MCS influences the packet loss probability, where
more robust MCSs that transport less data are more likely to be decodable at a receiver. (We
assume that the transmit power is fixed.) Our main objective is to minimize the completion
time, i.e., the time needed for all receivers to successfully receive the data.

The finite horizon multicast problem is inherently more complex than the infinite hori-
zon counterpart. When multicasting an infinite amount of data among a homogeneous group
of receivers (i.e., with the same average channel conditions and receive rates), the optimum
tradeoff between multiuser diversity and multicast gain only depends on the number of re-
ceivers and their current channel conditions. In expectation, differences in the amount of
data received by the different receivers will even out over time and therefore do not have
to be taken into account. In contrast, the optimum decision in the finite horizon case also
depends on the amount of data received thus far by each receiver (or, more accurately, on the
amount of data each receiver still needs to obtain in order to decode the full block of data
and thus complete). Intuitively, in case a receiver is lagging behind but many other receivers
are also still for from completing, the lagging receiver may catch up by itself and jointly
maximizing throughput for all these receivers may be the optimum decision. If, however, all
other receivers are close to completion, optimizing the MCS (and hence the transmit rate)
for the lagging receiver only may be the optimum choice to minimize overall completion
time, given that all other receivers are likely to complete before the lagging receiver in any
case.

The main contributions of our thesis are as follows:
•We formalize the finite horizon OMS problem and propose a dynamic programming (Dyn-
Prog) based solution, that optimally adapts the MCS to minimize the completion time, the
time at which all receivers successfully receive the required amount of data.
• The high complexity of Dyn-Prog renders this approach unsuitable for many practical
scenarios. We therefore propose a simple state-based heuristic that selects the MCS that
maximizes the instantaneous throughput for the receiver with the minimum number of pack-
ets which thus had the lowest throughput so far (called Max-Min).
• We further design a slightly more complex adaptive algorithm that selects the MCS that
results in an expected system state (given by numbers of packets received by the different
receivers) that has the lowest expected completion time. Due to the complexity of accurately
calculating completion time, we use a weighted Euclidian distance metric (called weighted
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completion time or Weighted-CT). It measures the distance between the different possible
future states and the final state where all receivers completed, with weights based on average
throughput estimates of the receivers.
• We compare the performance of our two low-complexity heuristics to the optimal Dyn-
Prog solution as well as to existing approaches that greedily maximize the throughput for all
receivers and a broadcasting scheme that always transmits to all receivers. We analyze sce-
narios with homogeneous and heterogeneous receiver sets under a basic multi-state channel
model as well as Rayleigh fading. Under Rayleigh fading, the Max-Min algorithm pro-
vides a performance gain of 15% over the throughput maximization scheme and a gain of
20% over the broadcasting scheme. At a very slight increase in complexity, the Weighted-
CT heuristics performs very close to the optimal Dyn-Prog strategy in almost all scenarios,
achieving performance gains of 25% and 40% over the throughput maximization and broad-
cast scheme, respectively. For both our heuristics, the gains that can be obtained under the
basic multi-state channel model are even larger.

Our thesis is organized as follows. In Chapter 2, we review existing work on opportunis-
tic multicast scheduling. Chapter 3 provides an overview of our system model including
the channel model and the MCS dependent packet loss model. In Chapter 4, we detail the
optimal scheduling algorithm based on a dynamic programming formulation. To address the
problem of state space explosion and high complexity of the dynamic programming solu-
tion, we propose two low-complexity heuristics in Section Chapter 5. We also discuss some
basic scenarios to provide an intuition into how the heuristics trade off receiver throughput
depending on the current state of the system. Simulation results that compare the relative
performance of the different algorithms are presented in Chapter 6. The possible extension
on our current work is presented in Chapter 7 and finally we conclude our thesis in Chapter 8.





Chapter 2

Related Work

The idea of OMS was pioneered by Gopala and Gamal [1] who studied the tradeoff
between multiuser diversity and multicast gain. They studied the performance of three dif-
ferent scheduling mechanisms that adapt the transmit rate to the user with the best channel,
the worst channel, and the median channel, respecively. In their follow-up paper [8], they
analyzed the performance achieved by serving a fixed fraction of users. This restriction is re-
laxed in [4], where the authors show that dynamic selection ratios that select more than 50%
of the users can achieve higher throughput. Furthermore, a throughput maximizing scheme
for erasure-coded multicast (F-OMS) is presented, where the user selection ratio depends
only on the set of multicast users in the system.

The authors of [9] propose algorithms with a static selection ratio (fixed for all transmis-
sions) and a dynamic selection ratio (adapted to the instantaneous channels at each transmis-
sion) that maximize overall throughput. In [10], the authors extend their work of [9] from
homogeneous to heterogeneous scenarios, composed of different groups of homogeneous
users. A similar optimization algorithm for multicast throughput maximization in homoge-
neous to heterogeneous networks is proposed in [11]. While all of these works target the
infinite horizon case, in [2] the authors do consider scenarios with a finite number of mul-
ticast packets. Using extreme value theory, they derive the optimal selection ratio for each
transmission that minimizes completion time, i.e., the time period during which each user
is selected often enough to receive the whole block of data. In contrast to our work, their
optimization algorithm does not consider the state of the receivers in terms of number of
packets received.

All of the above papers use a simple outage based channel model, where packet errors
are deterministic. Receivers with channel conditions better than a certain threshold are guar-
anteed to receive the packet and all others are guaranteed to lose the packet. In real wireless
systems, packet errors are much more random and depend on noise and interference. In our
model, we explicitly take the relationship between the channel conditions, the chosen MCS,
and the probability of error into account. Furthermore, all of the above papers – except [2] –
focus on the infinite-horizon scenario and thus the performance of the proposed algorithms
is sub-optimal in the finite-horizon problem we consider here.

The problem of minimizing the overall delay for all users to receive a certain number of
packets is studied in [12] through a dynamic programming approach. This work does not
consider erasure coding over a larger block of data but repeatedly multicasts a single packet
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6 CHAPTER 2. RELATED WORK

until each receiver has obtained it. The BS then multicasts the next packet in the same man-
ner, and so on. The goal of the optimization algorithm is therefore to minimize the number
of transmission required to multicast a single packet to all receivers, and the state of the sys-
tem is the number of receivers that did not yet receive the packet. The algorithm adapts its
decision to the changes in the set of users that still need to receive the packet and maximizes
the throughput for those users. The approach is mainly suitable for a single homogeneous
group of users, since its complexity increases exponentially with the number of user groups
in heterogeneous scenarios. The method of multicasting a single packet repeatedly is less
efficient than multicasting blocks of erasure coded packets as is done above.

The most basic scheme against which we compare our proposed algorithms is the broad-
cast algorithm (called LCG user rate in [3]), where the transmission rate is limited by the
receiver that currently has the worst channel. This scheme ensures successful transmission
to all receiver at all times but may sacrifice a lot of throughput when channels are highly
variable. We further compare against a scheme called greedy that optimizes the selection ra-
tio at each transmission opportunistically based on the current channel states of all receivers
so as to maximize total throughput. This mechanism has a performance that is indicative of
the different selection ratio based throughput maximization algorithms above.

For reliable broadcasting in multicast applications, we use erasure coding as in [2, 4,
10, 11]. The main difference that distinguishes our work is the optimization of completion
time in finite horizon multicasting. Further, we do not assume deterministic packet errors,
i.e., channel outage, but model the packet error rate based on the channel conditions and the
chosen MCS. We evaluate the proposed algorithm under realistic channel assumptions that
include the effects of small-scale Rayleigh fading.



Chapter 3

System Model

We model the system as a time-slotted broadcasting system with a single Base Station
(BS) and N mobile users scattered within the coverage radius of the cell. Each user must
receive a block of data of B bytes and we assume that, thanks to erasure coding, each packet
transmitted by the BS and received by a mobile user is useful if the user has received less
than B bytes. In case multiple blocks of data are to be transmitted in succession, the BS will
start transmitting the next data block only after all the receivers fully received the current
block.

A time slot is of fixed duration. Thus, the BS broadcasts the same number of symbols,
which, depending on the MCS corresponds to a variable number of bytes. We assume that
the BS can select one of M MCSs, indexed by m = 1, . . . ,M . The number of bytes per slot
that can be transmitted using MCS m is denoted by Rm.

Perfect Channel State Information (CSI) and knowledge of the number of bytes a user
has successfully received is assumed to be available at the base station prior to the transmis-
sion in each time slot. The users see independent channel instances hi[k] at each time slot k,
and the discrete-time channel model for the received signal at user i is given by:

srx
i [k] = hi[k]s

tx[k] + ni[k], (3.1)

where srx
i [k] is the signal received by user i at time slot k, stx[k] is the signal broadcast from

the BS at time slot k, and ni[k] is the additive white Gaussian noise term with power spectral
density N0.

For the analysis, we assume a discrete set of C channel realizations Hi for user i. The
probability of user i seeing channel coefficient hi ∈ Hi in a slot is assumed to be αi(hi).
The vector of channels perceived by all users, also referred to as the channel combination,
is denoted by h = {hi, i = 1 . . . , N} where hi ∈ Hi. With some abuse of notation, we
denote by H the set of all possible channel combinations, and by α(h) =

∏N
i=1 αi(hi), the

probability of a channel combination h ∈ H. Note that the the total number of channel
combinations is H = CN .

Different from the prior work discussed in Section 2, we do not assume deterministic
channel outage but use the probability of error (PER) for a given channel and MCS from [13]
in order to model the erasure probability. Therefore, for a channel instance hi ∈ Hi, the PER
for user i under MCS m is represented by pmi (hi), and the probability of success is given by
qmi (hi) = 1− pmi (hi).
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8 CHAPTER 3. SYSTEM MODEL

In this thesis, we use the following terms:
(1) A strategy g specifies the MCS g(h) for each channel combination h ∈ H. Hence, the
total number of strategies is S =MH . We denote by G, the set of all possible strategies. (2)
The state consists of the vector of the number of bytes received by each user i denoted by
x = {xi, i = 1, . . . , N}. The state space X consists of all states where the number of bytes
received by all users is positive and less than or equal to B. The initial state where none of
the users have any information is x0 and the end state where all the users have received B
bytes is denoted by xB .1

(3) A policy µ maps any given state x ∈ X to the strategy gµx to be used in that state.
(4) The expected completion time Dµ(x) is the mean time required to get from state x to the
end state xB under policy µ.

1To reduce the state space, we can use a normalized block size by replacing the block size of B bytes by
the greatest common divisor of the MCS rates. Thus, each MCS corresponds to transmitting a discrete number
of bytes in a slot. As an example, for M = 2 and MCSs with rates of 6 Mbps and 9 Mbps, the normalized
transmitted data per slot isR1 = 2 andR2=3, respectively (in units of 3kb if we assume a slot duration of 1ms).



Chapter 4

Optimization Problem

In this section, we consider the case of memoryless channels and formulate the problem
as a stochastic shortest path problem [14] with cost per stage equal to 1 (time needed per
slot is fixed, τ = 1) and no terminal cost. We assume that the probability of successfully
receiving a packet is non-zero for every combination of modulation scheme and channel
condition, though it might be extremely low for some combinations.

4.1 Dynamic programming based solution (Dyn-Prog)

Let E = {e| |e| = N, ei ∈ {0, 1}} be the set of all vectors of size N whose components
take values 0 or 1. The transition probability from state x ∈ X to state y ∈ X when MCS
m is used under channel combination h is given by:

ρmh (x,y) =
∑

min(x+Rme,B)=y
e∈E

(
N∏
i=1

pmi (hi)
eiqmi (hi)

1−ei

)
, (4.1)

where the above minimization is defined element-wise. Note that in the case of every user
experiencing an erasure, the state remains unchanged.

The state space is finite, and there clearly exists a finite integer K such that there is a
positive probability of terminating after K steps irrespective of the policy. Thus, the optimal
policy µ∗ satisfies Bellman’s equations at every state x:

Dµ∗(x) = min
g∈G

1 +
∑
h∈H

α(h)
∑
y∈X

ρ
g(h)
h (x,y)Dµ∗(y)

 , (4.2)

and the optimal strategy at state x

gµ
∗
(x) = argmin

g∈G

∑
h∈H

α(h)
∑
y∈X

ρ
g(h)
h (x,y)Dµ∗(y)

 . (4.3)

Since the state space is finite, there are several options to solve for the optimal policy as well
as the minimum expected completion time. We choose a simple value iteration approach.

9
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Starting from the end state xB , we use Bellmann’s equation Eq. 4.2 to determine the com-
pletion times of the states that only depend on the end state (for which the completion time is
known to be 0). We then proceed in the same manner to determine the expected completion
times of states that only depend on states for which the completion time is already known,
until the completion times for all states are computed. This process also yields the optimum
policies from Eq. 4.3.

4.2 A simple two user example

Consider a scenario with two users (N = 2), with identically distributed channels. Let
H1 = H2 = {L,H}, and H = {HH,HL,LH,LL}, where L and H denote channels
with low and high channel quality, respectively. The base station can choose one of three
modulation schemes in each slot. The probability of packet error when MCS m is used is
denoted by pm(L) and pm(H) for both users under the low and high channel respectively. A
strategy is defined by specifying the modulation scheme to be used for each vector channel
inH.

In this example, Bellman’s equation at state {x1, x2} is:

Dµ∗({x1, x2}) = 1 +min
g∈G

∑
h∈H

α(h)
(
pg(h)(h1)p

g(h)(h2)Dµ∗({x1, x2})

+pg(h)(h1)q
g(h)(h2)Dµ∗({x1,min(x2 +Rg(h), B)})

+qg(h)(h1)p
g(h)(h2)Dµ∗({min(x1 +Rg(h), B), x2)})

+qg(h)(h1)q
g(h)(h2)Dµ∗({min(x1 +Rg(h), B),

min(x2 +Rg(h), B)})
)

We evaluate the optimal policy in a scenario where the H and L channels for the users
areH1 = H2 = {5dB, 28dB}. The probability of L and H are α1(L) = α2(L) = 0.75 and
α1(H) = α2(H) = 0.25. We choose such a highly variable channel, since it makes it easier
to demonstrate the decision tradeoffs that the algorithm makes in the different regions of the
state space. The probability of each channel combination in H can be easily obtained by
multiplying the respective channel probabilities. For simplicity, we only use M = 3 MCSs
with normalized rates of Rm=1 = 1, Rm=2 = 4 and Rm=3 = 9 and the PER for each MCSs
and channel instant is listed in Table 4.1.

Table 4.1: PER for different MCS and SNR value pair

pmi (hi) m = 1 m = 2 m = 3

hi = 28dB 0 0 0.08
hi = 5dB 0.23 0.97 1

In Figure 4.1, each drift vector (arrow) reflects optimal policy at that state. It shows the
expected future state given the optimum MCSs chosen for the different channel instances,
and hence the length of a vectors is indicative of the throughput obtained by the correspond-
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Figure 4.1: Optimal policy with the dynamic programming algorithm (Dyn-Prog)
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Figure 4.2: Max-Min Algorithm
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Figure 4.3: Weighted-CT algorithm

ing policy.1 We set the (normalized) block size B = 20. At the initial state x0 = {0, 0}
the optimal policy is g(h) = {1, 3, 3, 3}, i.e., MCS m = 1 is used for channel combination
LL and MCS m = 3 is used for channel combinations LH ,HL, and HH . This particular
policy is a greedy policy which gives the maximum throughput to both users. This pol-
icy is also used in almost all states up to x = {14, 14}. Closer to the borders of the state
space, the policy changes from greedy to more and more favoring the user that is lagging
behind. This accounts for the fact that the leading user is likely to finish before the trailing
user even if MCS decisions are optimized for the trailing user and aims to prevent the loss
of multiuser diversity caused by a user finishing early. For {14 < x1 ≤ 16, x2 < 14}
and {x1 < 14, 14 < x2 ≤ 16}, the predominant policies are g(h) = {1, 3, 2, 3} and
g(h) = {1, 2, 3, 3}, respectively, where a more conservative coding modulation scheme is
chosen when the trailing user has a bad channel. This policy sacrifices throughput to pre-

1For better readability we plot only every other policy vector and double their lengths.
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vent the trailing user from falling further behind. Even closer to the borders the policies are
g(h) = {1, 3, 1, 3} and g(h) = {1, 1, 3, 3}, even further trading off overall throughput for a
higher packet reception probability for the trailing user. When both users received a similar
number of bytes and are close to the end state xB , the algorithm also chooses a more con-
servative MCS indicated by a shorter arrow length to avoid overshooting (i.e., unnecessarily
delivering more than B bytes to both users).

While solving the stochastic shortest path problem minimizes average completion time
and provides the optimal policy, the size of the state space and the computational complex-
ity increase exponentially with N , the number of users. Therefore, despite providing the
optimal solution, the above approach is not, in general, practical for actual network imple-
mentation.



Chapter 5

State-Aware Heuristics

Due to the high complexity of the Dyn-Prog algorithm introduced in the previous sec-
trion, we propose two low-complexity heuristics that mimic the characteristic of Dyn-Prog
algorithm.

5.1 Maximize minimum throughput heuristic (Max-Min)

This heuristic is based only on the current state (the number of bytes that each user has
successfully received), and the current channel conditions. At each slot, the user with the
least number of received bytes is identified as the worst user who is most likely to require the
highest number of slots to receive all data. Note that this is indeed the case when the users
are homogeneous and perceive identical channel distributions. In the case of heterogeneous
users, those users that perceive channel conditions that are worse (on average) are highly
likely to also be the trailing users and thus most likely to finish last. The algorithm uses in
each slot the MCS that maximizes the throughput for the trailing user. If both users have the
same number of bytes, the algorithm greedily maximizes sum throughput for both.

Figure 4.2 depicts the average drift resulting from such a policy in a scenario with the
same parameter setting as explained in Section for homogeneous users. There are two pre-
dominant strategies that are used for all states off the diagonal. As Max-Min sacrifices
overall throughput in favor of the trailing user as soon as a user falls behind, the resulting
strategies are g(h) = {1, 3, 1, 3} and g(h) = {1, 1, 3, 3}. On the diagonal, Max-Min’s sum
throughput maximization leads to the same strategy as in the Dyn-Prog solution, except for
the last state before finising. Since in contrast to the Dyn-Prog, Max-Min does not explicitly
take expected completion time into account, it does not switch to more conservative sym-
metric strategies of g(h) = {1, 2, 2, 2} and g(h) = {1, 1, 1, 1}, respectively, that deliver the
required number of bytes to finish with a lower packet loss probability compared to using
the highest MCS m = 3 (which would result in delivering more bytes than necessary to the
receivers).

Overall, we note that compared to the optimal Dyn-Prog the Max-Min algorithm is more
conservative and ensures that the progression of state is with high probability along the
diagonal where both users have the same number of bytes.

13



14 CHAPTER 5. STATE-AWARE HEURISTICS

5.2 Weighted completion time heuristic (Weighted-CT)

In many cases, favoring the trailing user is overly conservative. In particular, when the
number of pending bytes is large for all users and the relative lag is small, the probability that
the currently trailing user finishes last is small. We now present a heuristic that more closely
models the decisions taken by the Dyn-Prog algorithm to achieve a better tradeoff between
instantaneous sum throughput and balancing the number of bytes pending for different users.

At slot k, with state x and channel h, we evaluate the average drift and determine the
expected next state, ym, conditioned on using modulation scheme m as:

ymi = xi + qmi (hi)Rm, i = 1, . . . , N (5.1)

We then estimate the additional time required, on average, for all users to receiveB bytes rel-
ative to other states. Since computing the average remaining time under the optimal policy is
computationally intensive, we use a weighted Euclidean distance measure in order to char-
acterize the difference in completion times from different states. The metric τyassociated
with state y is:

τy =

√√√√ N∑
i=1

(
(B − yi)
wi

)2

(5.2)

Here, the weights reflect the average channel conditions perceived by each user, with a user
that perceives poor channels on average associated with a lower weight. The modulation
scheme chosen at slot k is m∗ = argminm τym .

5.2.1 Choice of weights

We choose weights wi that are proportional to the average throughput achieved by the
user under a hypothetical policy that chooses the MCS uniformly at random, i.e.,

wi =
∑
h∈H

M∑
m=1

α(h)qmi (hi)Rm.

As the actual choice of MCS depends on the state as well as the channels of the other users
and cannot be determined in advance (sort of using the optimum decisions given by the Dyn-
Prog), this hypothetical policy is a very simple method to capture the relative throughput
differences among the users.

In practical scenarios, the channel distribution of individual users may not be known in
advance. Further, the channel statistics of a mobile user may change over time, albeit on
time scales that are slow with respect to average completion times. In such settings, we use
exponentially weighted averaging in order to track the user weights. The estimated weight
of user i at slot k, ŵi[k], when the perceived channel is h is given by:

ŵi[k] = (1− β)ŵi[k − 1] + β

M∑
m=1

qmi (hi)Rm, (5.3)

where β is a constant that is chosen to be sufficiently small.
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Figure 4.3 shows the drifts for the proposed Weighted-CT algorithm. Our choice of
weights indeed captures well the relative desirability of the different states. While the set of
strategies used is not as rich as in the Dyn-Prog approach, in particular at the transition
between the greedy throughput maximization strategy and the more conservative border
strategies, the strategies in the majority of state space are almost the same. In particular,
this holds for states around the diagonal which are much more likely to occur in practice
than states far off the diagonal where the number of bytes for the two users differs a lot.





Chapter 6

Results

In this section, we evaluate and study the performance of our proposed algorithms in
homogeneous and heterogeneous scenarios and compared them to the existing broadcast
and greedy schemes. For small scenarios (N = 2) we also compare our results to the optimal
Dyn-Prog solution. First of all, we study the performance in a simple scenario, i.e., N = 2
users, C = 2 channel instances to build an intuition towards more complicated scenarios.
Later, we study the impact of block size B as well as number of user N and finally, we
analyze performance under multipath Rayleigh fading channels with path loss model from
COST207 [15] and Winner Model II [16], respectively.

In all of the simulations, we consider 3 modulation types BPSK, QPSK and QAM with
channel codes code with code rates 1/2, 2/3 and 3/4, resulting in seven different MCS.
These correspond to rates of 6, 12, 24, 36, 48, and 54 Mbps. The corresponding PER with
respect to the instantaneous channel quality for each MCS is obtained from [13]. For the
performance metric we use average throughput which we compute as follows:

η =
B

D
Mbps (6.1)

where η is the average throughput, B is the normalized block size and D is the completion
time. Here, we consider normal MTU sized packets of 1500Bytes. In this Chapter, block
size and normalized block size are use interchangeably but both of them represent the size
normalized block size corresponding to the greatest common divisor of the MCS rates.

6.1 Comparison to optimal Dyn-Prog solution

In this section, we first analyse the performance of the different algorithms in a simple
N = 2 with C = 2 channel instances and M = 7 modulations scenarios. This simple
scenario allows us to obtain the optimum Dyn-Prog solution. We study both homogeneous
and heterogeneous user scenarios.

6.1.1 Homogeneous network

In the homogeneous scenario, both users have the same channel parameters (but the
channel instances themselves are independent for both users). Here, we also present the

17
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result of increasing the channel variability δ of the users. Channel variability δ is the dif-
ference between the H and L channel of each user. For instance, in this case the lowest
channel variability is δ = 4 (H = 11dB and L = 6.7dB) and the highest channel variability
is δ = 20.8 (H = 20dB and L = 0.2dB). Each channel variability pair is chosen such that
the average throughput for each pair remains fixed, which facilitates the comparison of the
results. In addition, we also fix the stationary channel probability for high (α(H) = 0.25)
and low (α(L) = 0.75) channel. The normalized block size is B = 200.

Figure 6.1 depicts the average throughput of each scheme as the channel variability δ
increases. As expected, greedy scheme performs well since the users have the same average
channel conditions. Greedy scheme optimizes the throughput therefore, in this scenario it is
able to equally serves both users. The Weighted-CT scheme similarly optimizes throughput
and simultaneously serves all the user in a fair manner while ensuring low delay. On the
other hand, the Max-min scheme is overly conservative towards the trailing user as it tries to
balance the users even if the trailing user is only lagging by a small number of bits. As the
broadcast scheme is limited by the user with the worst channel, it is transmitting at the low-
est MCS most of the time. While it is expected that the performance of both Max-min and
broadcast decreases since the L channel degrades as the variability increases, it is interesting
that the performance of greedy, Weighted-CT and Dyn-Prog first decreases but then slightly
improve later. This is because of the MCS chosen which gives the highest possible through-
put. For instance, when δ = 4dB, the throughput optimization choices are Rm = {4, 2, 2
and 2} for channel combination H as mentioned in Chapter 6.1, but the throughput opti-
mization choice at δ = 10dB is Rm = {4, 4, 4 and 2}. It can easily be calculated that the
normalized throughput at δ = 10dB is lower than that at δ = 4dB. Here, the Weighted-CT
scheme behaves like the greedy scheme in the sense that it tries to give as much as possi-
ble to both users. Since the average channels of the users are the same, the weights w for
both the users are the same as well. Another unusual performance for Max-Min is when it
downperfroms all the schemes including broadcast because giving at higher rate while the
trailer has H channel is not optimal (see per slot throughput comparison in Figure 6.2(a)) as
compared to giving to both users as an average rate. On the contrary, broadcast scheme per-
forms worse than Max-min because the bad channel quality became worst when δ increases
and it is unreasonable to serve the worst channel user while sacrificing a lot of throughput.
Figure 6.2(b) shows the average achievable sum throughput for broadcast scheme is consis-
tently lower than the rest because it ignore the opportunity of sending at a much higher rate
that results in higher sum throughput.

6.1.2 Heterogeneous network

In the heterogeneous channel model, we assume that one user does not move (fixed user)
while the other user is moving towards BS (mobile user) with an initial distance equivalent
to that of the fixed user. In another word, the mobile user have an increment in its H and L
channel’s SNR value. The first extreme in the graphs is when both users are homogeneous
and having high channel Hfixed = Hmobile = 15dB and low channel Lfixed = Lmobile =
5dB. On the other extreme, the fix user’s channel instances isHfixed = 15dB and Lfixed =
5dB while the channel instances for the mobile user is Hmobile = 29dB and Lmobile =
19dB. It is clear that, we ensure the channel variability between the H and L channel is
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δ = 10dB and the corresponding probability of H and L channels are α(H) = 0.25 and
α(L) = 0.75.

In Figure 6.1(a), the performance of broadcast scheme is bad in homogeneous scenario,
it also applies when the heterogeneity of the users is not high. As the heterogeneity increases
where the average throughput of the mobile user increases, broadcast and Max-min scheme
which always favour the worst or trailing users have advantage over greedy scheme. Since
the parameters setting in for δ = 10dB Figure 6.1(a) and first point in Figure 6.1(b) is simi-
lar, it gives the same average throughput. As other scheme gradually increase in their perfor-
mance, greedy’s throughput also initially improves however it degrades as the heterogeneity
increase because the rates used for transmitting a packet is higher and greedy tends to give
to the mobile user when its channel improves and leaves the fixed user with a higher backlog
which cost greedy with a higher completion time. However, Weighted-CT cares to serve
both user under all circumstances, here it behaves like Max-min as it assigns lower weight
to fixed user than mobile user. In addition, we include the per timeslot throughput perfor-
mance for low heterogeneity (see Figure 6.2(c)) and high heterogeneity (see Figure 6.2(d))
networks. In these figures, the average sum throughput is computed based on the chosen
MCS and channel combination at each time slot. For the purpose of clear comparison be-
tween scheme, we take a sample once every 5 time slots. In Figure 6.2(a), we observe a
clear two level of average sum throughput. For number of user N = 2, on average the first
user receive the complete data within 120 slots and the second user complete in an approx-
imate of 150 slots for all the schemes. While Figure 6.2(a) and Figure 6.2(b) only show a
two levels of sum average throughput, Figure 6.2(c) and Figure 6.2(d) show more than two
levels of sum average throughput. In heterogeneous network, users are distinct, on average,
the mobile (good channel quality) user will finish much quicker than the fixed (bad chan-
nel quality) user. There exist a clear second and third levels in Figure 6.2(d) especially for
greedy scheme because the fixed user remains in the system for some times before it receives
all the desired information. As we only have two types of user (i.e., mobile and fixed), we
cobserve that greedy has a much higher throughput than the other scheme because it greed-
ily serves the good users (i.e., users with better channel quality) while ignoring the bad user
and when all the good users received all the intended packets, it has a longer time slots with
lower throughput because the users left are the bad users with high and low channel of 15dB
and 5dB, respectively. We also perform simulations for these scenarios by using a larger
block size B = 5000 and it results in the same performance for both homogeneous and
heterogeneous scenarios.

6.2 Larger scenarios

In this section, we present the simulation results for the scheme in two different higher
complexity settings (i.e., impact of increasing the number of users in the system and impact
of increasing the block size B and study the performance.

6.2.1 Impact of increasing the number of users

For the scenario where the number of user increases, we fixed the block size to B = 200
in both homogeneous and heterogeneous settings. Here, we use the same channel parameters
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(b) Heterogeneous network with increasing hetero-
geneity.

Figure 6.1: 2-user scenario with block size B = 200

for the H and L channel as in Chapter 6.1. For the homogeneous scenario, the correspond-
ing H and L channels are 19dB and 2.5dB, respectively. In the heterogeneous user case,
the corresponding H and L for fixed and mobile users are Hfixed = 15dB,Lfixed = 5dB
and Hmobile = 27dB,Lmobile = 17dB, respectively. The number of user increases expo-
nentially from N = 2 to N = 64.

Figure 6.3 shows that the average throughput for all the schemes decreases as the number
of user increases because it is more difficult to find decisions that jointly optimize perfor-
mance for a larger number of users. At the same time, since completion time is determined
by the slowest user, as the number of user increases, it becomes more probable that some
users see a high number of bad channels and lag far behind. In the homogeneous scheme
(see Figure 6.3(a)) it is expected that broadcast scheme performs the worst in this scenario
because it tends to be very conservative and always transmit at the lowest rate at least 90%
of the time. Max-min however, performs better although it tries to keep both users as close as
possible regardless of the relative difference in the number of bits obtained. As explained in
the Chapter 6.1, homogeneous user distribution gives advantage to greedy scheme because
it tries to give to all users at the highest possible throughput which also explains the good
performance of Weighted-CT.

In Figure 6.3(b), we see the same pattern where the average throughput decreases with
an increasing number of user for the same reasons as above. It is interesting to note that the
broadcast scheme performs better than Max-min for a higher number of users. This is due
to the fact that optimizing for the trailing user is similar to broadcasting to all users. Max-
min loses throughput when it favors the trailing user, without taking into account that this
user may have a better channel later. When the channel of the trailing user becomes better,
Max-min will transmits at a higher rate causing high PER for low channel user who might
continuously see bad channel in the next few slots therefore causing unwanted backlog.
Our proposed Weighted-CT performs the best since based on its knowledge of the average
channel it can ensure that the right tradeoff between user throughput is achieved through



6.2. LARGER SCENARIOS 21

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

Number of time slots

A
ve

ra
ge

 s
um

 th
ro

ug
hp

ut

 

 

Weighted−CT
Broadcast
Greedy
Max−min

(a) δ = 4.3dB, H = 11dB, L = 6.7dB
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(b) δ = 14.8dB, H = 18dB, L = 3.2dB
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(c) Average throughput = 12.7, H = 17dB, L =
7dB
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(d) Average throughput =29.9, H = 27dB, L =
17dB

Figure 6.2: Throughput comparison between schemes in homogeneous (Figure 6.2(a) and
Figure 6.2(b)) and heterogeneous scenario (Figure 6.2(c) and Figure 6.2(d))

their different weights. It is also interesting to note that, the performance of broadcast
scheme is unusual when compared to other schemes as the number of user increases. We
compare the per-slot sum throughput for different number of user in Figure 6.4 and notice
that performance in Figure 6.4(b), as compared to that in Figure 6.4(a) and Figure 6.4(c), the
sum throughput difference between Weighted-CT and broadcast is greater in Figure 6.4(b).
Broadcast throughput is bounded by the worst channel while Weighted-CT and Max-min
have better chance to transmit at higher rate as the number of user increases while the choice
is limited when the number of user is as small as N = 2. Therefore for case with N = 2,
Weighted-CT and Max-min perform similar to broadcast. By equally serving the fixed and
mobile users as N increases, Weighted-CT obtains lower sum throughput as compared to
Max-min at the beginning of the transmission but it reduces the time taken for the fixed
user to finish because it has obtained more useful information during this period. This as
well applies to broadcast that try to transmit to all users at each slot. Therefore, broadcast
achieves a performance close to Weighted-CT schemes.
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(a) Homogeneous network.
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(b) Heterogeneous network,

Figure 6.3: Fixed block size of B = 200 with increase number of user
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(a) N = 2 users.
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(b) N = 8 users.
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(c) N = 64 users.

Figure 6.4: Throughput comparison between schemes for different N in heterogeneous net-
work.

6.2.2 Impact of increasing the block size

We use similar parameters as in Chapter 6.2.1 except that here we set the number of user
to N = 10 and investigate the performance as the block size increases exponentially from
B = 10 to B = 5120. Different from the performance in Figure 6.3, throughput increases
as the block size increases (see Figure 6.5). At smaller block size, it is easier for the good
user to finish but this leaves the bad user in the system and it will take as much time as the
worst user to finish. With the probability of being in bad channel 3 times greater than good
channel, it is very likely to encounter bad channel within the next time slots. However, when
the block size increases, users will stay in the system for a longer time. As we compare the
drop off time in Figure 6.7(a) and Figure 6.7(b), the fraction of drop off time with respect to
the total completion time is larger (approximately 85%) for small block size B = 10, and
smaller (approximately 60%) for a larger block size B = 80. In another word, the longer is
the time all the user stay in the system together, the more likely will the time to broadcast to
all user be shorter. From all the previous results, we already know that both broadcast and
Max-min downperforms the rest in homogeneous scenario and greedy is expected to perform
close to Weighted-CT. Nevertheless, greedy downperforms other schemes at small block size
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B = 10 because its greedy decision for optimizing per slot sum throughput does not allow
the users who are currently in L = 5dB channel to obtain any new data byte and cost it a
higher completion time (see Figure 6.7(a)).
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(a) Homogeneous network.

10
1

10
2

10
3

4.5

5

5.5

6

6.5

7

7.5

8

Block size (B)
A

ve
ra

ge
 th

ro
ug

hp
ut

 (
M

bp
s)

 

 

Weighted−CT
Max−min
Greedy
Broadcast

(b) Heterogeneous network.

Figure 6.5: Fixed 10 users scenario with increase number of packets

In the heterogeneous users scenario, broadcast performs as good as Weighted-CT be-
cause when the number of packet is as small as B = 10 and the highest normalized rate
that we have is 9, it is only important to serve the users in the bad channel especially for the
case of heterogeneous users when there exists one clear bad user (fixed user). This is also
the reason for which greedy scheme underperforms the rest of the schemes as it only oppor-
tunistically optimize for the mobile (good) users. It can give a much higher instantaneous
throughput than favoring the fixed (bad) user. Max-min is expected to outperform broadcast
scheme as block size increases because broadcast ignores the opportunity of sending at high
rate which caused the lost in throughput.
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(a) Small block size (B = 20).
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(b) Large block size (B = 80).

Figure 6.6: Average sum throughput per time-slot for different block size in homogeneous
network.
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(a) Small block size (B = 10).
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(b) Large block size (B = 80).

Figure 6.7: Average sum throughput per time-slot for different block size in homogeneous
network.

6.3 Mutipath Rayleigh Fading networks

All previously shown results are the baseline for the performance simulated in this sec-
tion. In the following, we include the actual multipath model (from COST207 model [15])
and path loss model (from Winner Model II [16]) as our channel model. In the subsequent,
we evaluate the performance in both homogeneous and heterogeneous user’s network for
different block size B and number of user N scenarios with different transmit power from
the BS. In the homogeneous scenario, we place the users at an equidistant from the base
station while in the heterogeneous scenario, we place them at a different distance from the
base station. The multipath Rayleigh channel distribution of the users are independent and
identically distributed (non i.i.d) in homogeneous scenario and non-i.i.d in heterogeneous
scenario. The lowest transmit power is set such that the edge user is still able to receive the
transmitted data at its average channel. We also analyse the performance of the effect of
having low and high power transmitter. For the different transmission powers (low & high),
we show the results for the impact of exponentially increasing block size with fixed number
of user. In addition, the performance is also evaluated for exponentially increase in number
of user with fixed block size.

6.3.1 Impact of increasing the number of users for low transmit power at BS

Here, we fix the block size to B = 200 and observe the impact of increasing number
of user from N = 2 to N = 64 towards the average throughput in both homogeneous and
heterogeneous network scenarios with low transmit power at the BS. Figure 6.8 shows the
impact of increasing the number of user in both homogeneous and heterogeneous scenarios.
The general looks of the figure (i.e., as the number of user increases, the average throughput
decreases) is consistent with the results we obtained in the simple scenario with multiple
users (see Figure 6.3). However, there are a few differences between the characteristic of the
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figures which will be highlighted in the following.
Homogeneous network. In Figure 6.8(a), all the schemes tend to perform the same

when N = 2 which is in contrast to that in Figure 6.3(a). This is because of the unlikeli-
hood of staying in only two channel instantaneous (i.e., the simple case in Chapter 6.1 and
Chapter 6.2 with C = 2) due to the Rayleigh distributed channel. In addition, as the number
of user in the system is small, the users are not fully homogeneous because the transmission
period is too short for the user to see the average channel. Later, the performance converges
to what we expected which is comparable to that in the simple case (see Figure 6.3(a)) be-
cause the homogeneity among users is achievable as the number of user increases, i.e., the
transmission period needed to serves higher N is much longer. Overall, each scheme still
behaves in the same way (i.e., broadcast scheme still performs the worst among all the other
scheme).

Heterogeneous network. In the heterogeneous scenario, we observe from Figure 6.8(b)
that the greedy scheme performs as expected. However the broadcast scheme performs
better than the rest of the schemes when the number of user is small. When there are only
N = 2 users in the system, it is clear in heterogeneous case that the users are having very
distinct channel instances (i.e., high SNR for one and low for the other) and the optimal
scheme is a scheme that always gives to the user who constantly has the lower channel SNR
among the two. Therefore, in this situation, Max-min and broadcast schemes perform the
best. The channel variation δ betweenH andL channel is always δ = 10dB in Chapter 6.1.2
and the lowest channel SNR is 5dB. In contrast, δ in multipath Rayleigh fading from one
channel instant to another can be very small (e.g. δ = 0.1dB) and the lowest channel
SNR in deep fades can be below 0dB. Therefore, the smooth transition between the highest
and lowest channel SNR gives throughput avantage to Max-min over broadcast scheme for
the trailer (trailing user) does not always has the lowest channel SNR. Therefore, Max-
min has high chance of transmitting at a higher rate as compared to broadcast scheme. In
addition, the deep fade caused by multipath Rayleigh fading induced a high throughput lost
to broadcast scheme over all the other schemes in a system with higher number of user (e.g.
N = 64) for transmitting at a lowest possible rate. In contrast, the trailer is not always
the user with the worst channel in Max-min scheme. Therefore deep fade channel does not
greatly affect the throughput performance of Max-min.

6.3.2 Impact of increasing block size for low transmit power at BS

Here, we fix the number of user to N = 10 and observe the impact of increasing block
size from B = 10 to B = 5120 towards the average throughput in both homogeneous and
heterogeneous network scenarios for which BS is transmitting at low power.

Homogeneous network. As the block size increases, we observe in Figure 6.10(a) that
the performance curve is very similar to that in the simple scenario case (see Figure 6.5(a)).
However, the performance of broadcast scheme is better than all the other schemes including
our proposed schemes. First of all, it only consumes about 12 (see Figure 6.9(a)) and 19
(see Figure 6.9(b)) time slots (as needed by greedy scheme) to complete the transmission
of a block of size B = 10 and B = 20, respectively. Within this short period of time, it
is hardly possible that two users are completely homogeneous. Therefore, having distinct
instantaneous channel users resulting in good performance for both broadcast and Max-min
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(a) Homogeneous network.
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(b) Heterogeneous network

Figure 6.8: Increasing the number of user in multipath network with low transmit power at
BS.

schemes because the most important user is the one user who is having the worst channel
instances within the entire transmission slots. As the block size increases, the users achieve
almost similar average channel SNR (i.e., users are close or almost homogeneous) within a
longer transmission slots, therefore, the performance in Figure 6.10(a) is now comparable to
that obtained in Figure 6.5(a).
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(a) B = 10.
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(b) B = 20.

Figure 6.9: Per time slot average sum throughput performance in homogeneous network.

Heterogeneous network. Figure 6.10(b) depicts the impact of increasing block size
towards the performance of each scheme. For the same reason explained above, the existing
of a clear worse user caused broadcast scheme to outperform the rest of the scheme when the
block size is very small. Weighted-CT, Max-min and greedy schemes perform as expected
where greedy scheme performs the worst among other scheme in heterogeneous network.
Broadcast scheme performs unusually due to the occurance of deep fade in the multipath
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Rayleigh fading channel model and the impact is previously explained in Chapter 6.3.1.
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(a) Homogeneous multipath network.
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(b) Heterogeneous multipath network.

Figure 6.10: Increasing the block size (B) in multipath rayleigh fading network with low
transmit power at BS.

6.3.3 Impact of increasing the number of user for high transmit power at BS

Different from Chapter 6.3.1, here we consider a scenario where the transmit power of
the BS is increased. Similarly, we can also place the users closer to the BS as compared
to that in Chapter 6.3.1 instead of increasing the transmit power at the BS. Like the setting
in Chapter 6.3.1, we fix the normalized block size to B = 200 and observe the impact of
increasing number of user from N = 2 to N = 64 towards the average throughput in both
homogeneous and heterogeneous network scenarios.

Homogeneous network. Figure 6.11(a) shows that the overall performance between
schemes is very similar to that in Figure 6.8(a) when users are homogeneous. It is interesting
to note that greedy scheme downperforms Max-min scheme, conflicting the result obtained
in Figure 6.11(a). At a certain channel instantaneous, there will be one or more users having
channel SNR much higher than the others (channel SNR ranges between 15dB and 30dB)
which means transmitting at a much higher rate gives a very high throughput but it burdens
the bad channel users. Greedy scheme is suboptimal because the maximum average number
of time slots needed is less than 80 for broadcast scheme (i.e., other schemes need much
lower number of time slots). This means that, the users does not see enough channels to
obtain the same average channel among users. It is clear that, under this situation, Max-min
scheme that optimizes for the trailer performs very close to Weighted-CT which also pays
attention to the trailer. As for broadcast scheme, it still performs badly although the bad user
does not see deep fade channel as low as that in the low transmit power at BS case (e.g. The
average SNR is between 20dB and 27dB but the deep fade can go from 15dB to as low as
0dB). Weighted-CT performs the best among all other schemes because it tries to transmit
at the highest possible rate without causing the trailer to have a high backlog.

Heterogeneous network. As mentioned earlier in Chapter 6.3.3, the number of time
slot needed for every user in the multicast network to receive the entire block is short when
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the transmit power is high. When users are heterogeneous, giving more data to the good
channel user that results in a slightly shorter average completion time D is the optimal
strategy for Weighted-CT because the gain from transmitting at high rate for good user (with
high channel SNR) is higher than the lost by the low channel SNR’s user. This has leads to
higher throughput at the earlier time slots and introduces some backlog for the low channel
user. Therefore, in this scenario (heterogeneous network with B = 200) Max-min performs
very well. As mentioned in Chapter 6.3.1, short transmission time gives opportunity to
broadcast and Max-min to perform better than the other scheme especially when the number
of user low and only requires an average of 30 to 40 time slots to complete the multicast
transmission.
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(a) Homogeneous users
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(b) Heterogeneous users

Figure 6.11: Increasing the number of user in high power transmitter network

6.3.4 Impact of increasing block size for high transmit power at BS

Here, we fix the number of user N = 10 and observe the impact of increasing block
size from B = 10 to B = 5120 towards the average throughput in both homogeneous and
heterogeneous network scenarios for which BS is transmitting at high power.

Homogeneous network. From Figure 6.12(a), it is expected that broadcast outperforms
the other scheme for two reasons: (1) There is a clear worst user within a short average time
slots of 20 (corresponding toB = 40), therefore it will take as much time as the worst user to
finish. (2) The users are not completely homogeneous due to the short transmission session.
It is interesting to note that Max-min performs worst than Weighted-CT for small block size.
As the block size increases, it performs close to Weighted-CT and finally at a large block
size, it again underperforms Weithted-CT. It is clear that, with a very short average trans-
mission slot, the users are heterogeneous. In the first time slot, Max-min treats users equally
therefore transmitting at the greedy rate. Since the number of time slot is very small, the im-
pact of the bad decision in one time slot is 20% on the completion time. This also explains
the performance of greedy scheme for small block size. Increasing the block size stabi-
lize the performance of each scheme because the homogeneity between users is achievable.
Therefore, Weighted-CT and greedy that optimize for overall throughput perform equally
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well over Max-min scheme. Broadcast scheme performs badly because it sacrifices a lot of
throughput as it tries to serve all the users with the least transmission rate limited by the
worst channel at a time slot. The performance of Max-min lies between Weighted-CT and
broadcast because it not only serves the trailer but it also obtains chances to serve at a high
rate when the trailer has a good channel (a chance to achieve higher throughput).
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(a) Homogeneous network.
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(b) Heterogeneous users

Figure 6.12: Increasing the number of packets in in high power transmitter network

Heterogeneous network. Figure 6.12(b) also inherited the same performance of broad-
cast scheme as in Figure 6.10 and it is as expected. It is also clear that Max-min performs
close to Weighted-CT in heterogeneous users scenario. One major difference between trans-
mitting at high power (see Figure 6.12(b)) and low power (see Figure 6.10(b)) in heteroge-
neous network is the performance of greedy scheme at large block size. With high power,
greedy performs much closer to Weithted-CT because the users are having better channel
SNR and even if the BS is transmitting at a higher rate, the worst user still manage to receive
the transmitted data bytes with a reasonable success rate. In contrast, transmitting at a high
rate with low transmission power at BS leads to high PER for the user who are close to the
cell’s edge. This however does not apply if the block size is small because short transmission
window (multicast session) does not allow the user who sees a low channel SNR now to see
good channels in the near future.





Chapter 7

Future work

In this thesis, our main objective is to derive an optimal solution with two other heuris-
tics (Max-min and Weighted-CT) that minimize the total time required for all the multicast
users to successfully receive a common set of data which is based on assumptions such as
perfect channel and state knowledge, fixed number of users for the duration of transmitting
the common set of data bytes to all multicast users, no constraint on energy and etc. In
addition, we only consider a single hop multicast from the BS to the end user. An actual
implementation however should not make the aforementioned assumptions. Following is
the list of our major focuses of research in the near future:

1. Eliminating the assumption of perfect channel and state knowledge at the BS by taking
into consideration the feedback from the end user. The channel quality is estimated
based on the received signal strength of the feedback packet from the end user while
the state knowledge is directly provided by the end user. Acquiring the feedback from
the end user at each time slot is a burden to the network. Therefore, we aim to design
a model whereby feedback is only acquired from the user whose channel quality is
higher than a certain threshold to avoid serving the user when its channel quality is
too low. In addition, this allow the reduction on the feedback load.

2. Joint network coding and cooperative transmission between users in a network coding
based sensor network can greatly improve the throughput performance of our scheme.
We intend to extend our single hop model to a cooperative network coding model so
that a user with more data can perform coding to the received data and forward it by
broadcasting it to the users in the same multicast group. We will use our Weighted-CT
algorithm at the relay station for it to choose the optimal MCS once the end nodes’ or
relay nodes’ channel and state are known.

3. The ability of OMS choosing the set of users to transmit to may allow us to reduce the
energy consumed by the mobile station. When a mobile station is in bad channel state,
serving this mobile station reduces the per-user throughput and it also does not allow
this user to go to its idle state for the next consecutive slots (i.e., in multipath Rayleigh
fading channel, once a user observes a bad channel, it commonly takes several time-
slots before it sees a good channel) where energy can be saved.
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Chapter 8

Conclusions

In this thesis we investigated the finite horizon opportunistic multicast scheduling prob-
lem, where a wireless base station has to transmit a fixed amount of erasure coded data to
a set of receivers. We designed an algorithm based on dynamic programming that, to the
best of our knowledge, is the first to explicitly take into account the system state in terms of
received amount of data at each receiver for the selection of the optimum modulation and
coding scheme. In addition to the well known tradeoff between broadcast gain and multiuser
diversity gain that is inherent to opportunistic multicast scheduling, the finite horizon nature
of our problem introduces an interesting further tradeoff, namely that of equalizing the finish
times of the users versus the total system throughput. While it has been shown that serving a
subset of users with good channels improves throughput, it also increases the likelihood that
those users finish before the other users. The more users leave the system early, the lower the
multiuser diversity gain that can be obtained through opportunistic scheduling from then on.
This tradeoff is state dependent. Intuitively, throughput maximization is a reasonable strat-
egy as long as users are far from finishing, whereas the closer users are to finishing, the more
important it becomes to allow lagging users to catch up rather than optimizing throughput
for all.

Based on these insights, we designed two simple and pratical heuristics that perform
close to the more complex proposed dynamic programming solution and that outperform
existing approaches that do not consider state. We performed an extensive range of simu-
lations for homogeneous and heterogeneous user scenarios and showed that our heuristics
outperform existing schemes by as much as 40% in realistic Rayleigh fading scenarios.
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