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ABSTRACT
This work considers Internet-based task computations in
which a master process assigns tasks, over the Internet, to
rational workers and collect their responses. The objective
is for the master to obtain the correct task outcomes. For
this purpose we formulate and study the dynamics of evolu-
tion of Internet-based master-worker computations through
reinforcement learning.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Reliability, Algorithms

Keywords
Internet-based task computing, Evolutionary dynamics, Re-
inforcement learning, Algorithmic mechanism design.

1. INTRODUCTION
Motivation and prior work: As an alternative to expen-
sive supercomputing parallel machines, Internet is a feasi-
ble computational platform for processing complex compu-
tational jobs. Several Internet-based applications operate
on top of this global computation infrastructure. Examples
are the volunteer-based “@home” projects such as SETI. In
SETI, for example, there is a machine, call it the master,
that sends tasks, across the Internet, to volunteers’ comput-
ers, call them workers. These workers execute and report
back some result. However, these workers may not be trust-
worthy (limiting the platforms potentials) and it might be at
their best interest to report incorrect results; that is, work-
ers, or their owners, can be viewed as rational [2]. In SETI,
the master attempts to minimize the impact of these bogus
results by assigning the same task to several workers and
comparing their outcomes (i.e., redundant task allocation is
employed).

Prior work has shown that it is possible to design algorith-
mic mechanisms with reward/punish schemes so that the
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master can reliably obtain correct task results. We view
these mechanisms as one-shot in the following sense: In a
round, the master sends a task to be computed to a col-
lection of workers, and the mechanism, using auditing and
reward/punish schemes guarantees (with high probability)
that the master gets the correct task result. For another
task to be computed, the process is repeated (with the same
or different collection of workers) but without taking advan-
tage of the knowledge gained. A detailed account of related
work can be found in [4].

Given a long running computation (such as SETI-like
master-worker computations), it can be the case that the
best interests, and hence the behavior of the workers, might
change over time. So, one wonders: Would it be possible
to design a mechanism for performing many tasks, over the
course of a possibly infinite computation, that could posi-
tively exploit the repeated interaction between a master and
the same collection of workers?

Our approach: In this work we provide a positive answer
to the above question. To do so, we introduce the concept of
evolutionary dynamics under the biological and social per-
spective and relate them to Internet-based master-worker
task computing. More specifically, we employ reinforcement
learning [3] to model how system entities or learners inter-
act with the environment to decide upon a strategy, and use
their experience to select or avoid actions according to the
consequences observed. Positive payoffs increase the prob-
ability of the strategy just chosen, and negative payoffs re-
duce this probability. Payoffs are seen as parameterizations
of players’ responses to their experiences. Empirical evi-
dence [1] suggests that reinforcement learning is more plau-
sible with players that have information only on the payoffs
they receive; they do not have knowledge of the strategies
involved. This model of learning fits nicely to our master-
worker computation problem: the workers have no informa-
tion about the master and the other workers’ strategies and
they don’t know the set of strategies that led to the pay-
off they receive. The workers have only information about
the strategies they choose at each round of the evolution of
the system and their own received payoffs. The master also
has minimal information about the workers and their inten-
tions (to be truthful or not). Thus, we employ reinforcement
learning for both the master and the workers in an attempt
to build a reliable computational platform.



Our contributions: (Full details in [4].)
• We formulate and study the dynamics of the evolution of

Internet-based master-worker computations through rein-
forcement learning.

• We develop and analyze a mechanism based on reinforce-
ment learning to be used by the master and the work-
ers. In particular, in each round, the master allocates a
task to the workers and decides whether to audit or not
their responses with a certain probability pA. Depend-
ing on whether it audits or not, it applies a different re-
ward/punish scheme, and adjusts the probability pA for
the next round (a.k.a. the next task execution). Similarly,
in a round, each worker i decides whether it will truthfully
compute and report the correct task result, or it will re-
port an incorrect result, with a certain probability pCi.
Depending on the success or not of its decision, measured
by the increase or the decrease of the worker’s utility, the
worker adjusts probability pCi for the next round.

• We show necessary and sufficient conditions under which
the mechanism ensures eventual correctness, that is, we
show the conditions under which, after some finite number
of rounds, the master obtains the correct task result in
every round, with minimal auditing, while keeping the
workers satisfied (w.r.t. their utility).

• Finally, we show that our mechanism, when adhering to
the above-mentioned conditions, reaches eventual correct-
ness quickly. In particular, we show analytically, proba-
bilistic bounds on the convergence time, as well as bounds
on the expected convergence time. Our analysis is com-
plemented with simulations.

2. ALGORITHMIC MECHANISM
The mechanism is composed by an algorithm run by the

Master and an algorithm run by each worker.

Master’s Algorithm: At each round, the master sends
a task to all workers in W (|W | = n) and, when all answers
are received, the master audits the answers with probability
pA; auditing means that the master computes the task by
itself, and checks which workers have truthfully reported the
correct task result. We assume that there is a value pmin

A > 0
so that at all times pA ≥ pmin

A . In the case the answers are
not audited, the master accepts the value contained in the
majority of answers and continues to the next round with
the same probability of auditing. In the case the answers
are audited, the value pA of the next round is reinforced;
meaning that pA is modified according to the outcome of
the round as follows:

pA = min{1,max{pmin
A , pA + αm( cheaters(r)

n
− τ)}}.

The master initially has scarce or no information about
the environment (e.g., workers initial pC). Therefore, a safe
approach for the master is to initially set pA = 0.5. Observe
that, in a round r, when the answers are not audited, the
master has no information about the number of cheaters
cheaters(r). Thus, pA remains the same as in the previ-
ous round. When the answers are audited, the master can
safely extract cheaters(r) and the master adapts the audit-
ing probability pA accordingly.

A discount factor, which we call tolerance and denote by
τ , expresses the master’s tolerable ratio of cheaters (typi-
cally, we will assume τ = 1/2). Hence, if the proportion of
cheaters is larger than τ , pA will be increased, and otherwise,
pA will be decreased. The amount by which pA changes de-
pends on the difference between these values, modulated by

a learning rate αm. This latter value determines to what
extent the newly acquired information will override the old
information.

After the master has received all answers , rewards/pe-
nalizes the workers appropriately. The following workers’
payoff parameters are considered: (1) WPC : worker’s pun-
ishment for being caught cheating; (2) WCT : worker’s cost
for computing the task; (3) WBY : worker’s benefit from
master’s acceptance. Furthermore, in every round, a worker
i has an aspiration ai, that is, the minimum benefit it ex-
pects to obtain in a round. To motivate the workers to par-
ticipate in the computation, the master must ensure that
WBY ≥ ai.We assume that the master knows the aspira-
tions (it may be included in a contract the master and the
worker agree before the start of the computation).
Workers’ Algorithm: At each round, each worker receives
a task from the master and, with probability 1− pCi calcu-
lates the task, and replies to the master with the correct
answer. (Initially, pCi could be set to 0.5.) If the worker
decides to cheat, it fabricates an answer, and sends the in-
correct response to the master. Flag Si models the decision
of a worker i to cheat (Si = −1) or not (Si = 1). After
receiving its payoff, each worker i changes its pCi according
to the payoff Πi received, the chosen strategy Si, and its
aspiration ai as follows:

pCi = max{0,min{1, pCi − αw(Πi − ai)Si}}.
The workers have a learning rate αw. We assume that all

workers have the same learning rate, that is, they learn in
the same manner (see also the discussion in [3]; the learning
rate is called step-size there); note that our analysis can be
adjusted to accommodate also workers with different learn-
ing rates.

Overview of results: We analyze the evolution of the
master-worker system as a Markov chain and we show the
following result:

Theorem 1. If pA > 0 then, in order to guarantee with
positive probability that, after some finite number of rounds,
the system achieves eventual correctness, it is necessary
and sufficient to set WBY ≥ ai + WCT for all i ∈ Z in
some set Z ⊆W such that |Z| > n/2.

We call the time (number of rounds) taken to achieve even-
tual convergence as convergence time. We show, both in
expectation and with high probability, that when our mech-
anism adheres to the conditions of Theorem 1, it can reach
convergence time quickly. Our analysis is complemented
with simulation results that further demonstrate the practi-
cality of our mechanism. Full details can be found in [4].
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