
Network working group I. van Beijnum
Internet-Draft IMDEA Networks
Expires: November 7, 2009 May 6, 2009

 One-ended multipath TCP
 draft-van-beijnum-1e-mp-tcp-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 7, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 Normal TCP/IP operation is for the routing system to select a best
 path that remains stable for some time, and for TCP to adjust to the
 properties of this path to optimize throughput. A multipath TCP
 would be able to either use capacity on multiple paths, or

van Beijnum Expires November 7, 2009 [Page 1]

Internet-Draft One-ended multipath TCP May 2009

 dynamically find the best performing path, and therefore reach higher
 throughput. By adapting to the properties of several paths through
 the usual congestion control algorithms, a multipath TCP shifts its
 traffic to less congested paths, leaving more capacity available for
 traffic that can’t move to another path on more congested paths. And
 when a path fails, this can be detected and worked around by TCP much
 more quickly than by waiting for the routing system to repair the
 failure.

 This memo specifies a multipath TCP that is implemented on the
 sending host only, without requiring modifications on the receiving
 host.

Table of Contents

 1. Introduction . 3
 2. Notational Conventions . 5
 3. Congestion control . 5
 3.1. RTT measurements . 5
 3.2. Fast retransmit . 6
 3.3. Slow retransmit . 6
 3.4. SACK . 7
 3.5. Fairness and TCP friendliness 8
 4. Path selection . 8
 4.1. The multipath IP layer 9
 4.2. The path indication option 10
 4.3. Timestamp integration option 12
 4.4. Path for retransmissions 12
 4.5. ECN . 13
 4.6. Path MTU discovery . 13
 5. Flow control and buffer sizes 14
 6. Handling of RSTs . 14
 7. Middlebox considerations 14
 8. Security considerations 15
 9. IANA considerations . 15
 10. Acknowledgements . 15
 11. References . 16
 11.1. Normative References 16
 11.2. Informational References 16
 Appendix A. Document and discussion information 17
 Appendix B. An implementation strategy 17
 Author’s Address . 21

van Beijnum Expires November 7, 2009 [Page 2]

Internet-Draft One-ended multipath TCP May 2009

1. Introduction

 In order to achieve redundancy to protect against failures, network
 operators generally install more links than the minimum necessary to
 achieve reachability. So there are often multiple paths between any
 two given hosts, even when paths not allowed by policy are removed.
 However, routing protocols usually select a single "best" path. When
 multiple paths are used at the same time by the routing system, those
 tend to be parallel links between two routers or paths that are
 otherwise very similar. As such, a lot of potentially usable network
 capacity is left unused. A multipath transport protocol would be
 able to use more of that capacity by sending its data along multiple
 paths at the same time, or by switching to a path with more available
 capacity.

 As TCP [RFC0793] is used by the vast majority of all networked
 applications, and TCP is responsible for the vast majority of all
 data transmitted over the internet, the logical choice would be to
 make TCP capable of using multiple paths. SCTP already has the
 ability to use multiple paths through the use of multiple addresses.
 However, using SCTP in this way requires significant application
 changes and deployment would be challenging because there is no
 obvious way for an application to know whether a service is available
 over SCTP rather than, or in addition to, TCP. In addition, SCTP as
 defined today [RFC2960] does not accommodate the concurrent use of
 multiple paths. Additional paths are purely used for backup
 purposes.

 This memo describes a one-ended multipath TCP, which only changes the
 behavior of the TCP sender, achieving multipath advantages when
 communicating with unmodified TCP receivers. This means it is not
 possible to perform path selection by using different destination
 addresses. However, other mechanisms that are transparent to the
 receiver are possible. A simple one would be for the sender to send
 some packets to one router, and other packets to another router. If
 these routers then make different routing decisions for the
 destination address in the TCP packets, the packets flow over
 different paths part of the way. Other mechanisms to achieve the
 same goal are also possible. However, with a single destination
 address, paths can’t be completely disjoint.

 Using multiple paths at the same time brings up a number of
 challenges and questions:

 o Naive scheduling (such as round robin) of transmissions over the
 different paths reduces performance of each path to that of the
 slowest path.

van Beijnum Expires November 7, 2009 [Page 3]

Internet-Draft One-ended multipath TCP May 2009

 o Using multiple paths causes reordering, which triggers the fast
 retransmit algorithm, causing unnecessary retransmissions and
 reduced performance.

 o TCP requires in-order delivery of data to the application, so when
 losses occur on one path, buffer capacity may run out and data
 can’t be transmitted on unaffected paths until the lost data has
 been retransmitted.

 o Using multiple paths with an instance of regular congestion
 control on each path for a single TCP session makes that session
 use network capacity more aggressively than single path sessions,
 which can be considered "unfair" and increases packet loss.

 This memo seeks to address the first two issues by running separate
 instances of TCP’s congestion control algorithms for the subflows
 that flow over different paths. Buffer issues are addressed by
 retransmitting packets before buffer space runs out, even if normal
 retransmission timers haven’t fired yet. The fairness issue is a
 topic of ongoing research; this specification simply limits the
 number of subflows to limit unfairness and increased loss.

 The one-ended multipath TCP takes advantage of the fact that TCP
 [RFC0793] congestion control [RFC2581] and flow control are performed
 by the sender. With regard to flow control and congestion control,
 the role of the receiver is limited to sending back acknowledgments
 and advertise how much data it is prepared to receive. Hence, it is
 possible for the sender to utilize different paths and modify the
 fast retransmit logic as long as the receiver recognizes the packets
 as belonging to the same session. So a multipath TCP sender can
 distribute packets over multiple paths as long as this doesn’t
 require incompatible modifications to the IP or TCP header contents,
 most notably the addresses. A single-ended multipath TCP session
 must still be between a single source address and a single
 destination address, regardless of the path taken by packets.

 The subset of the packets belonging to a TCP session flowing over a
 given path is designated a subflow.

 In order to benefit from using multiple paths, it’s necessary for the
 multipath TCP sender to execute separate TCP congestion control
 instances for the packets belonging to different subflows. In the
 case where all packets are subject to the same congestion window,
 performance over a fast and a slow path will often be poorer than
 over just the fast path, defeating the purpose of using multiple
 paths. For instance, in the case of a 10 Mbps and a 100 Mbps path
 with otherwise identical properties, a simple round robin
 distribution of the packets and the use of a single congestion window

van Beijnum Expires November 7, 2009 [Page 4]

Internet-Draft One-ended multipath TCP May 2009

 will limit performance to that of the slowest path multiplied by the
 number of paths, 20 Mbps in this case.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Congestion control

 A multipath TCP maintains instances of all congestion control related
 variables for each subflow. This includes, but is not limited to,
 the congestion window, the ssthresh, the retransmission timeout
 (RTO), the user timeout and RTT measurements. However, because TCP
 requires in-order delivery of data, there must be a single send
 buffer and a single receive buffer, thus flow control must happen
 session-wide.

 Per-subflow congestion control is performed by recording the path
 used to transmit each packet. Acknowledgments are then attributed to
 the subflow the acknowledged packets were sent over and the
 congestion window and other congestion control variables for the
 relevant subflow are updated accordingly.

3.1. RTT measurements

 Because a multipath TCP sender knows which packet it sent over which
 path, it can perform per-path round trip time measurements. This
 only works if return packets are consistently sent over the same path
 (or a set of paths with the same latency). If the receiver is not
 multipath-aware, this condition will generally hold: acknowledgments
 will flow from the receiver to the sender over a single path unless
 there is a topology change in the routing system or packets that
 belong to a single session are distributed over different paths by
 routers, which is rare. To multipath-capable routers on the return
 path (if any), the non-multipath-aware host appears to select the
 default path for all of its packets.

 However, if, like the sender, the receiver is multipath-aware, then
 the return path that the receiver chooses to send ACKs over will
 influence the RTTs seen by the original sender. The situation where
 the sender is unaware of fact that the receiver selects different
 return paths with different latencies is suboptimal, even compared to
 consistently measuring the RTT over the slowest path, as this leads
 to higher variability in the RTT measurements and therefore a higher

van Beijnum Expires November 7, 2009 [Page 5]

Internet-Draft One-ended multipath TCP May 2009

 RTO.

 Having the receiver send ACKs over the same path mitigates the
 problem somewhat; but presumably, if the receiver is also multipath
 capable and has data to send, it will want to send this data over
 more than one path. So RTT measurements may inadvertently end up
 measuring different return paths in that case. A better solution is
 for the sender to include an indication in packets that allows the
 receiver to determine through which path the sender sent the packet.
 This information, along with the path initially chosen for the
 outgoing packet that is acknowledged, allows TCP to attribute each
 RTT measurement to a specific path.

 Because congestion control happens per path, there must also be a
 separate retransmission timeout (RTO) value for each path.

3.2. Fast retransmit

 Different paths will almost certainly have different RTTs, and even
 if the average RTT is the same, normal burstiness and differences in
 packet sizes will make packets routinely arrive through the different
 paths in a different order than the order in which they were
 transmitted. Without modifications to the algorithm, this would
 trigger the fast retransmit algorithm unnecessarily. To avoid this,
 fast retransmit is executed whenever, for packets belonging to the
 same subflow, after an unACKed packet or sequence of packets, more
 than two segments of new data is ACKed with SACK. This means fast
 retransmit happens per subflow, and reordering between subflows no
 longer triggers fast retransmit.

3.3. Slow retransmit

 In multipath TCP, a per-path RTO is employed to recover from
 congestion events that fast retransmit can’t handle. Because the
 missing packets create holes in the data stream, subsequent packets
 received over other paths must be buffered in the receive buffer.
 Unless the receive buffer is extremely large, this means the entire
 session stalls when the receive buffer fills up. This situation
 persists until the RTO expires for the congested or broken path so
 the missing packets can be retransmitted. Should the path in
 question be completely broken, this will then lead to an almost
 immediate new stall, and the stall/RTO cycles will then continue
 until the user timeout / R2 timer [RFC1122] for the subflow expires.

 This is solved by taking unacknowledged packets transmitted over
 subflows that are stalled because they have exhausted their
 congestion window and are now waiting for the RTO to expire, and
 scheduling retransmissions of those packets over other paths before

van Beijnum Expires November 7, 2009 [Page 6]

Internet-Draft One-ended multipath TCP May 2009

 the RTO of the stalled subflow expires. This should be done such
 that the missing packet arrives before it becomes necessary to stop
 sending data altogether because the receiver advertises a zero
 receive buffer. Such retransmissions therefore happen as the receive
 buffer space advertised by the receiver reaches RTT * MSS for the
 path that will be used for the retransmission; presumably the path
 with the lowest RTT. In essence, this creates a second level of fast
 retransmit that acts across subflows in addition to the normal fast
 retransmit that happens per subflow. This mechanism is named "slow
 retransmit".

 In the case of single path TCP, scheduling retransmissions before the
 RTO expires could be problematic because this would be more
 aggressive than standard (New)Reno congestion control. But in the
 case of multipath TCP, the retransmission can happen over one of the
 other paths, which is still progressing.

 By scheduling a retransmission faster than an RTO, there is an
 increased risk that a packet that was still working its way through
 the network is retransmitted unnecessarily. However, the alternative
 is allowing the progress of the session to stall (on all paths),
 reducing throughput significantly.

3.4. SACK

 When packets (belonging to different subflows) arrive out of order,
 the the receiver can’t acknowledge the receipt of the out of order
 packets using TCP’s normal cumulative acknowledgment. However, the
 [RFC2018] (also see [RFC1072]) Selective Acknowledgment (SACK)
 mechanism is widely implemented. SACK makes it possible for a
 receiver to indicate that three or four additional ranges of data
 were received in addition to what is acknowledged using a normal
 cumulative ACK. When packets are sent over multiple paths and arrive
 out of order, the information in the SACK returned by the receiver
 can tell the sender how each subflow is progressing, so per-subflow
 congestion control can progress smoothly and unnecessary
 retransmissions are largely avoided.

 One-ended multipath TCP requires the use of SACK to be able to
 determine which subflows are progressing even if other subflows are
 stalled, and thus the normal TCP ACK isn’t progressing. If the
 remote host doesn’t indicate the SACK capability during the three-way
 handshake, a multipath TCP implementation SHOULD limit itself to
 using only a single subflow and thus disabling multipath processing
 for the session in question.

van Beijnum Expires November 7, 2009 [Page 7]

Internet-Draft One-ended multipath TCP May 2009

3.5. Fairness and TCP friendliness

 One of the goals of multipath TCP is increased performance over
 regular TCP. However, it would be harmful to realize this benefit by
 taking more than a "fair" share of the available bandwidth. One
 choice would be to make each subflow execute normal NewReno
 congestion control on each subflow, so that each individual subflow
 competes with other TCPs on the same footing as a regular TCP
 session. If all subflows use non-overlapping physical paths, other
 TCPs are no worse off than in the situation where the multipath TCP
 were a regular TCP sharing their path, so this could be considered
 fair even though the multipath TCP increases its bandwidth in direct
 relationship to the number of subflows used. Note that in this case,
 although multipath TCP sends at the same rate as regular TCP on a
 given path, resource pooling [wischik08pooling] benefits are still
 realized because a given transmission completes faster so it uses up
 resources for a shorter amount of time.

 But if several logical paths share a physical path, multipath TCP
 takes a larger share of the bandwidth on that path. This would only
 be acceptable as fair for a very small number of subflows. The other
 end of the spectrum would be for multipath TCP to conform to exactly
 the same congestion window increase and decrease envelope that a
 regular TCP exhibits, being no more aggressive than a regular single
 path TCP session. At this point in time we will assume that fairness
 is a tunable factor of the regular NewReno AIMD envelope. A simple
 way to limit the amount of additional aggressiveness exhibited by
 multipath TCP is a limit on the number of subflows. Until more
 analysis has been performed and/or there is more experience with
 multipath TCP, a multipath TCP implementation SHOULD limit itself to
 using no more than 3 subflows concurrently.

4. Path selection

 Note that in order to gain multipath benefits, the multipath TCP
 layer must be able to determine the logical path followed by each
 packet so it can measure path properties and perform per-path
 congestion control. In order to limit the number of packets flowing
 over each path to the amount allowed by the per path congestion
 window, the multipath TCP layer must be able to specify over which
 path a given packet is transmitted.

 The situation where routers distribute packets over different paths
 based on their own criteria makes it impossible for hosts to send
 less traffic over congested paths and more traffic over uncongested
 paths and is therefore incompatible with multipath TCP. When routers
 distribute traffic belonging to the same flow (or, in the case of

van Beijnum Expires November 7, 2009 [Page 8]

Internet-Draft One-ended multipath TCP May 2009

 multipath TCP: subflow) over different paths this will also cause
 reordering and the associated performance impact on TCP.

4.1. The multipath IP layer

 The one-ended multipath TCP is logically layered on a multipath IP
 layer, which is able to to deliver packets to the same destination
 address through one or more logical paths, where the set of n logical
 paths share between one and m physical paths. In some cases, the
 multipath IP layer will be able to determine that a logical path
 isn’t working, or maps to the same physical path as a previous
 logical path. For example, if the multipath TCP indicates that a
 packet should be sent over the third path, and the multipath IP is
 set up to use different next hop addresses for path selection, but
 only two next hop addresses are available, the multipath IP layer can
 provide feedback to the multipath TCP layer. In other cases, packets
 simply won’t be delivered, or will be delivered through the same
 physical path used by other logical paths. This may for instance
 happen when multipath TCP selects path 1 and multipath IP puts a path
 selector with value "1" in the packet, but there are no multipath
 capable routers between the source and destination, so all packets,
 regardless of the presence and/or value of a path selector, are
 routed over the same physical path.

 It is up to the multipath TCP layer to handle each of these
 situations.

 For the purposes of this multipath TCP specification, the simplest
 possible interface to the multipath IP layer is assumed. When TCP
 segments traveling down the stack from the TCP layer to the IP layer
 aren’t accompanied by a path selector value, or the path selector
 value is zero, the IP layer delivers packets in the same way as for
 unmodified TCP and other existing transport protocols, i.e., over the
 default path. Segments may also be accompanied by a path selector
 value higher than zero, which indicates the desired path. If the
 desired logical path is available, or may be available, the multipath
 IP layer attempts to deliver the packet using that logical path. If
 the desired logical path is known to be unavailable, the multipath IP
 layer drops the segment.

 It is assumed that paths as seen by the multipath IP layer are mapped
 to logical paths with increasing numbers roughly ordered in order of
 decreasing assumed performance or availability. I.e., if path x
 doesn’t work or has low performance, that doesn’t necessarily mean
 that path x+1 doesn’t work or has low performance, but if if paths x,
 x+1 and x+2 don’t work or have low performance, then it’s highly
 likely that paths x+3 and beyond also don’t work or have even lower
 performance. Routers may have good next hop or even intra-domain

van Beijnum Expires November 7, 2009 [Page 9]

Internet-Draft One-ended multipath TCP May 2009

 link weight information and link congestion information, but they
 generally don’t have information about the end-to-end path
 properties, so the ordering of paths from high to low availability/
 performance must be considered little more than a hint.

 The multipath IP layer may be implemented through a variety of
 mechanisms, including but not limited to:

 o Using different outgoing interfaces on the host

 o Directing packets towards different next hop routers

 o Integration with shim6 [I-D.ietf-shim6-proto] so that packets can
 use different address pairs

 o Manipulation of fields used in ECMP [RFC2992] (i.e., a different
 flow label)

 o Type of service routing (such as [RFC4915])

 o Different lower layer encapsulation, such as MPLS

 o Tunneling through overlays

 o Source routing

 o An explicit path selector field in packets, acted upon by routers

 At this time, no choice is made between these different mechanisms.

4.2. The path indication option

 Note that several of the fields discussed below are defined with
 future developments in mind, they are not necessarily immediately
 useful.

 In order to allow for accurate RTT measurements and to inform the IP
 layer of the selected path, a TCP option indicating the desired path
 is included in all segments that don’t use the default path. The
 format of this option is as follows:

 +-+
 | KIND=TBA | LENGTH = 3 |D| MP |R| SP |
 +-+

 The length is 3.

 D is the "discard eligibility" flag (1 bit). It is similar, but not

van Beijnum Expires November 7, 2009 [Page 10]

Internet-Draft One-ended multipath TCP May 2009

 identical, to the frame relay discard eligibility bit or the ATM cell
 loss priority bit. Set to zero, no special behavior is requested.
 Set to one, this indicates that loss of the packet will be
 inconsequential. This allows routers to drop packets with D=1 more
 readily than other packets under congested conditions, and also to
 completely block packets with D=1 on links that are considered long-
 term congested or expensive, even if there is no momentary
 congestion.

 Setting the D bit to 1 for some subflows (presumably, ones with a
 performance lower than the best performing subflow) allows multipath
 TCP to give way to regular TCP and other single path traffic on
 congested or expensive paths. As long as the multipath TCP sets D to
 0 on the subflow with the best performance, multipath TCP should
 still perform better than regular TCP, but the reduction in bandwidth
 use on the other paths helps achieve resource pooling benefits.

 MP is a is a path selector that may be interpreted by multiple
 routers along the way (3 bits). A value of 0 is the default path
 that is also taken by packets that don’t contain a multipath option.
 Multipath TCP aware routers should take this value into account when
 performing ECMP [RFC2992]. Packets with any value for MP MUST be
 forwarded, even if the number of available paths is smaller than the
 value in MP.

 R (1 bit) is reserved for future use. MUST be set to zero on
 transmission and ignored on reception.

 SP is a path selector that is interpreted only once by the local TCP
 stack or a router close to the sender (3 bits). A value of 0 is the
 default path that is also taken by packets that don’t contain a
 multipath option. If the value in SP points to a path that isn’t
 available, the packet SHOULD be silently dropped. This behavior, as
 opposed to selecting an alternate path out of the available ones,
 helps avoid the use of duplicate paths. As such, a router may only
 interpret SP rather than MP when it is known that the router is the
 only one acting on SP. All other routers may only act on MP.

 It is not expected that routers will make routing decisions directly
 based on the path indication option, as this option occurs deep
 inside the packet and not in a fixed place. However, a multipath IP
 layer or a middlebox may write a path selection value into a field in
 packets that is easily accessible to routers. But conceptually, the
 routers act upon the values in SP and MP.

 The initial packets for each TCP session MUST use D, MP and SP values
 of zero. If D, MP and SP are all zero, then the path selector option
 isn’t included in the packet. This makes sure that single path

van Beijnum Expires November 7, 2009 [Page 11]

Internet-Draft One-ended multipath TCP May 2009

 operation remains possible even if packets with the path selector
 option are filtered in the network or rejected by the receiver. The
 packets that are part of the TCP three-way handshake SHOULD be sent
 over the default path, in which case they don’t contain the path
 selector option; hence the ability to do multipath TCP isn’t
 indicated to the correspondent at the beginning of the session as is
 usual for most other TCP extensions.

4.3. Timestamp integration option

 As an optimization, hosts MAY borrow the four bits used by the path
 selector option from the timestamp option, and thus save one byte of
 option space, which means the path selector option can replace the
 padding necessary when the timestamp option is used and not increase
 header overhead. In that case, the combined path selector and
 timestamp options MUST appear as follows:

 +-+
 | KIND=TBA | LENGTH = 2 | KIND=8 | LENGTH = 10 |
 +-+
 |D| MP | TS Value (TSval) |
 +-+
 | TS Echo Reply (TSecr) |
 +-+

 D and MP are the same as in the three-byte form of the path selector
 option. R and SP do not occur in this form of the path selector
 option and are assumed to be zero.

 TSval is the locally generated timestamp. Because the timestamp is
 reduced to 28 bits, the minimum clock frequency is increased from the
 59 nanoseconds mandated by [RFC1323] to 1 microsecond so the
 timestamp wraps in no less than 255 seconds.

 TSecr is the timestamp echoed back to the other side (32 bits).

 All hosts conforming to this specification MUST be able to recognize
 the integrated path selector and timestamp options, but they are not
 required to generate them.

4.4. Path for retransmissions

 A multipath TCP implementation MUST be capable of scheduling
 retransmissions over a path different from the path used to transmit
 the packet originally. This includes packets subject to fast
 retransmit.

van Beijnum Expires November 7, 2009 [Page 12]

Internet-Draft One-ended multipath TCP May 2009

4.5. ECN

 Explicit Congestion Notification works by routers setting a
 congestion indication in the IP header of packets rather than
 dropping those packets when they experience congestion. The receiver
 echos this information back to the sender which then performs
 congestion control in exactly the same way as if a packet was lost.
 The ECN specification ([RFC3168]) is such that the receiver sets the
 ECN-Echo (ECE) flag in the TCP header for all subsequent packets that
 it sends back until the sender sets the Congestion Window Reduced
 (CWR) flag. As the ECE flag is set in multiple ACKs, there is no
 obvious way to correlate the ECN indication in an ACK with a specific
 packet that experienced congestion, and subsequently, the path that
 is congested.

 At this time, a multipath TCP conforming to this specification SHOULD
 NOT use ECN. ECN MAY be negotiated, but when more than a single path
 is used at a given time, packets SHOULD be sent with the ECN field
 set to Not-ECN (00), and incoming non-zero ECE flags SHOULD NOT be
 acted upon with regard to congestion control.

4.6. Path MTU discovery

 Path MTU discovery [RFC1191] is performed for TCP by having TCP
 reduce its packet sizes whenever "packet too big but DF set" ICMP
 messages are received. As the name suggests, the path MTU is
 dependent on the path used, so multipath TCP must maintain MTU
 information for each path, and adjust this information for each path
 individually based on the too big messages that it receives.

 The time between probing with a larger than previously discovered MTU
 must either be randomized or explicitly coordinated to avoid probing
 larger MTUs for multiple subflows at the same time, as probing larger
 MTUs is likely to lead to a lost packet, and having losses on
 multiple paths at the same time would be suboptimal. For instance,
 rather than probe every t, in the case of 2 paths, after t*0.5 the
 first path is probed, after t the second and after t*1.5 the first is
 probed again.

 Both the IPv4 and IPv6 versions of ICMP return enough of the original
 packet in a "packet too big" message to be able to recover the
 sequence number from the original packet, which makes it possible to
 correlate the too big message with the packet that caused it, and
 thus the path used to transmit the packet.

van Beijnum Expires November 7, 2009 [Page 13]

Internet-Draft One-ended multipath TCP May 2009

5. Flow control and buffer sizes

 In order to accommodate the increased number of packets in flight,
 the send buffer must be increased in direct relationship with the
 number of paths being used. Alternatively, the number of paths used
 concurrently should be limited to send buffer / avgRTT.

 Although under normal operation, the receive buffer doesn’t fill up,
 there are two reasons the receive buffer must be the same size as the
 send buffer: it must be able to accommodate a round trip time plus
 two segments worth of data during fast retransmit, and the advertised
 receive window limits the amount of data the sender will transmit
 before waiting for acknowledgments. So in practice, the receive
 buffer limits the maximum size of the send buffer, and therefore, the
 number of paths that can be supported concurrently.

 There is no simple rule of thumb to determine the number of paths
 that should be used, as the maximum number of paths that the receive
 window can accommodate depends both on the maximum receive window
 advertised by the receiver and by the RTTs on the paths.

6. Handling of RSTs

 If an RST is received after enabling a new path, this could be a
 reaction to the presence of an unknown option. So the optimal
 situation would be for an RST to reset just the path used to send the
 packet that generated the RST, not the entire session. Only when the
 last path or the default path (on which packets don’t include special
 options) receives an RST, the entire session should be reset.

7. Middlebox considerations

 NATs are designed to be transparent to TCP. Because one-ended
 multipath TCP conforms to normal TCP semantics on the wire, multipath
 TCP should in principle also be compatible with NAT. However, if
 different paths are served by different NATs that apply different
 translations, the receiver won’t be able to determine that the
 different subflows through the different paths belong to the same TCP
 session. So for NAT to work, the translation must either happen in a
 location that all paths flow through, or the different NATs on the
 different paths must act as a single, distributed NAT and apply the
 same translation to the different subflows.

 Middleboxes that only see traffic flowing over a subset of the paths
 used will see large numbers of gaps in the sequence number space.
 They may also not observe only a partial three-way handshake, or not

van Beijnum Expires November 7, 2009 [Page 14]

Internet-Draft One-ended multipath TCP May 2009

 observe any ACKs. As such, like with NATs, middleboxes that enforce
 conformance to known TCP behavior, must be placed such that they
 observe all subflows. For middleboxes that just check whether
 packets fall inside the TCP window, it may be sufficient for
 multipath TCP senders to make sure that all paths see at least one
 packet per window. Middleboxes that enforce sequence number
 integrity will almost certainly also block TCP packets for which they
 didn’t observe the three way handshake. A possible way to
 accommodate that behavior would be to send copies of all session
 establishment and tear down packets over all paths that the sender
 may use. However, this strategy is still likely to fail unless the
 receiver does the same so the middleboxes may observe the signaling
 packets flowing in both directions.

 It’s also possible that middleboxes (or perhaps hosts themselves)
 reject packets with the path indicator TCP option. Since packets
 flowing over the default path don’t carry the path indicato option,
 these packets should always be allowed through, so single path
 operation is always possible. When a multipath TCP sender starts to
 send packets over alternative paths, those packets won’t make it to
 the receiver because they contain the path indicator option. The
 result is that a new subflow, which would use a congestion window of
 two maximum segment sizes, would send two packets and then
 experiences a retransmission timeout. Slow retransmit makes sure the
 packets are transmitted before the session stalls, so the impact of
 the lost packets is negligible.

8. Security considerations

 None at this time.

9. IANA considerations

 IANA is requested to provide a TCP option kind number for the path
 indication option.

10. Acknowledgements

 The single ended multipath TCP was developed together with Marcelo
 Bagnulo and Arturo Azcorra.

 Members of the Trilogy project, especially Costin Raiciu, have
 contributed valuable insights.

 Iljitsch van Beijnum is supported by Trilogy

van Beijnum Expires November 7, 2009 [Page 15]

Internet-Draft One-ended multipath TCP May 2009

 (http://www.trilogy-project.org), a research project (ICT-216372)
 partially funded by the European Community under its Seventh
 Framework Program. The views expressed here are those of the
 author(s) only. The European Commission is not liable for any use
 that may be made of the information in this document.

11. References

11.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, November 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, September 2001.

11.2. Informational References

 [RFC1072] Jacobson, V. and R. Braden, "TCP extensions for long-delay
 paths", RFC 1072, October 1988.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

van Beijnum Expires November 7, 2009 [Page 16]

Internet-Draft One-ended multipath TCP May 2009

 [RFC4915] Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
 Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
 RFC 4915, June 2007.

 [wischik08pooling]
 Wischik, D., Handley, M., and M. Bagnulo Braun, "The
 resource pooling principle", Computer Communication
 Review 38, September 2008.

 [I-D.ietf-shim6-proto]
 Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
 Shim Protocol for IPv6", draft-ietf-shim6-proto-11 (work
 in progress), December 2008.

Appendix A. Document and discussion information

 The latest version of this document will always be available at
 http://www.muada.com/drafts/. Please direct questions and comments
 to the multipathtcp@ietf.org mailinglist or directly to the author.

Appendix B. An implementation strategy

 In order to perform per-path congestion control, all of the ACK-based
 events that trigger congestion control responses as well as all the
 variables used by the congestion control algorightms must be
 recreated in the multipath situation. These are the triggers and
 variables for the four mechanisms in RFC 2581.

 1. the path MTU (page 4)

 2. the arrival of an ACK that acknowledges new data (page 4)

 3. the arrival of a non-duplicate ACK (page 4) or the sum of new
 data acknowledged (page 5)

 4. triggering of the retransmission timer (page 5)

 5. the flightsize or number of bytes sent but not acknowledged (page
 5)

 6. the retransmission of a segment (page 5)

 7. the arrival of a third or subsequent duplicate ACK (page 6, page
 7)

van Beijnum Expires November 7, 2009 [Page 17]

Internet-Draft One-ended multipath TCP May 2009

 8. whether a retransmission timeout period has elapsed since the
 last reception of an ACK (page 7)

 1, 4, 6 and 8 are maintained session-wide.

 We recreate these events and variables based on SACK information in
 the one-sequence number multipath TCP case as follows.

 We keep track of every packet sent. (Alternatively: multi-packet
 contiguous blocks of data transmitted over the same path.) When an
 ACK comes in, we first remove the stored information about packets/
 data blocks that are cumulatively ACKed, noting how much data was
 ACKed for each path that the packets were sent over. Then we do the
 same for all the SACK blocks in the ACK. Because we remove the
 information about (S)ACKed data and you can remove something just
 once, we don’t have to keep track of previous SACKs like the current
 BSD implementation does.

 The only slightly tricky part is emulating duplicate ACKs. This may
 not even be really necessary, as the SACKs give us better information
 to base fast retransmit on, but that’s something for another day.
 What happens in the pseudo code is that when traversing the list of
 sent packets (this happens in order of seqnum), we note the path that
 packets that aren’t SACKed are sent over. When we’re done processing
 SACK data and it turns out that for a path there are one or more
 packets that we skipped over when processing SACK data and there was
 also data SACKed after a skipped packet, there was a lost (or
 reordered) packet on this path. When the amount of "duplicate ACKed"
 data grows beyond two segment sizes, we’ve reached the equivalent of
 three duplicate ACKs so we trigger fast retransmit (7).

 We update the congestion window (2 and 3) when there was data
 (S)ACKed for a path. ACKs that don’t acknowledge any data for a path
 aren’t relevant because we don’t need them to trigger fast retransmit
 and we assume that they’re sent to (S)ACK data for other paths,
 anyway. (Or they could be window updates.)

 We maintain the flightsize (5) by simply adding data bytes as packets
 are transmitted and subtracting when they’re (S)ACKed. Because we
 have explicit SACKs, we don’t need to guess based on duplicate ACKs.
 The flightsize is also adjusted when we perform fast retransmit or a
 regular retransmission over a path other than which was used for the
 original packet. In addition, we explicitly mark some packets to
 trigger once-per-RTT actions when they’re ACKed.

 Pseudo code for the above:

van Beijnum Expires November 7, 2009 [Page 18]

Internet-Draft One-ended multipath TCP May 2009

 // initializing data structures is left as an exercise for the
 // reader

 // transmitting packets
 // assume we’ve selected a path to transmit over

 path.flightsize = path.flightsize + packet.datasize
 packet.path = path
 packet.status.acked = false
 // set up state to remember to do per RTT stuff when packet is
 // ACKed
 if path.do_per_rtt_next_packet == true
 path.per_rtt_seqnum = packet.seqnum.first
 packet.per_rtt = true
 path.do_per_rtt_next_packet = false
 else
 packet.status.per_rtt = false
 // don’t set ECN on outgoing packets for now, can add logic
 // for deciding which packets to ECN enable later
 packet.ecn.sent = 0
 // add to linked list of sent packets (to handle retrans-
 // missions, linked list must maintain seqnum order, not FIFO
 // or LIFO)
 llpush(packet)

 // receiving (S)ACKs

 // normal flow-wide flow control actions based on cumACK
 // also happen (elsewhere)

 // handle ECN, must detect transitions rather than
 // depend on actual value
 if packet.ecnecho == true
 if ecn.previous == true
 ecn.current = false
 else
 ecn.current = true
 ecn.previous = true
 else
 ecn.previous = false

 // initialize some stuff before we handle the ACK
 for each path
 path.do_per_rtt = false
 path.ackedbytes = 0
 path.unacked.sure = 0
 path.unacked.maybe = 0
 path.ecn.received = false

van Beijnum Expires November 7, 2009 [Page 19]

Internet-Draft One-ended multipath TCP May 2009

 // remove cumulatively ACKed packets
 llwalk_init
 packet = llwalk_next
 while packet.seqnum.first < ack.cumulative
 // ECN, we only act if we enabled ECN when we sent the packet
 if ecn.current & packet.ecn.sent <> 0
 path.ecn.received = true
 // if part of a packet is ACKed, we need some trickery
 if packet.seqnum.last_plus_one > ack.cumulative
 path.ackedbytes += ack.cumulative - packet.seqnum.first
 packet.seqnum.first = ack.cumulative
 else
 path.ackedbytes = path.ackedbytes + packet.datasize
 if packet.per_rtt & packet.seqnum.first == path.per_rtt_seqnum
 path.do_per_rtt = true
 llremove(packet)
 packet = llwalk_next

 // now we handle the SACKs (assume exactly one SACKblock for
 // simplicity) we continue walking the linked list, no need to
 // restart
 while packet.seqnum.first < ack.sack.last_plus_one
 if packet.seqnum.last_plus_one < ack.sack.first
 // these packets overlap with the SACK block
 // for simplicity, assume packets are always completely
 // SACKed in reality we need to split a packet if only the
 // middle is SACKed ECN, we only act if we enabled ECN when
 // we sent the packet
 if ecn.current & packet.ecn.sent <> 0
 path.ecn.received = true
 path.ackedbytes = path.ackedbytes + packet.datasize
 if packet.per_rtt & packet.seqnum.first == path.per_rtt_seqnum
 path.do_per_rtt = true
 // add potentially unacked bytes to for sure unacked bytes
 // because we now know we had a SACK hole if any
 // unacked maybe bytes
 path.unacked.sure = path.unacked.sure + path.unacked.maybe
 path.unacked.maybe = 0
 // remove packet from the list
 llremove(packet)
 else
 // note how many bytes we skipped unSACKed
 // if later data is SACKed, that’s our version of a dup ACK
 path.unacked.maybe = path.unacked.maybe + packet.datasize
 packet = llwalk_next

 // done processing, now tally up the the results
 foreach path

van Beijnum Expires November 7, 2009 [Page 20]

Internet-Draft One-ended multipath TCP May 2009

 // update flightsize (item 5 in CC events/variables list)
 path.flightsize = path.flightsize - path.ackedbytes
 // if any data was ACKed
 if path.ackedbytes <> 0
 // some stuff was ACKed for this path
 if path.unacked.sure > 2 * path.mss
 // more than 2 * MSS worth of data in SACK hole = fast
 // retransmit execute fast retransmit (item 7 in CC
 // events/variables list) need to handle flightsize in
 // some way here ignore ECN because we already have a loss
 // send back ECN window update indication, though
 else
 // SACKs were cumulative for this path
 // execute cwnd update (items 2 and 3 in CC events/
 // variables list)
 // ECN must be taken into account here
 // and send back ECN window update indication
 if path.do_per_rtt
 // execute per RTT actions
 // indicate that this should be set for next packet sent
 path.do_per_rtt_next_packet == true

 Note that the pseudo-code doesn’t cover all the mechanisms explained
 earlier. Also, ECN is handled here because it’s not too difficult to
 do. The hard part is deciding which packets to enable ECN for.

Author’s Address

 Iljitsch van Beijnum
 IMDEA Networks
 Avda. del Mar Mediterraneo, 22
 Leganes, Madrid 28918
 Spain

 Email: iljitsch@muada.com

van Beijnum Expires November 7, 2009 [Page 21]

