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Abstract—The bisection width of interconnection networks
has always been important in parallel computing, since it
bounds the amount of information that can be moved from
one side of a network to another, i.e., the bisection bandwidth.
Finding the exact value of the bisection width has proven to
be challenging for some network families. For instance, the
problem of finding the exact bisection width of the multidi-
mensional torus was posed by Leighton [1, Problem 1.281]
and has remained open for almost 20 years. In this paper we
provide the exact value of the bisection width of the torus, as
well as of several d-dimensional classical parallel topologies that
can be obtained by the application of the Cartesian product
of graphs. To do so, we first provide two general results that
allow to obtain upper and lower bounds on the bisection width
of a product graph as a function of some properties of its
factor graphs. We also apply these results to obtain bounds for
the bisection bandwidth of a d-dimensional BCube network, a
recently proposed topology for data centers.

Keywords-Torus, bisection width, product graphs, complete
binary trees, extended trees, mesh-connected trees.

I. INTRODUCTION

Bisection width and bisection bandwidth of interconnec-
tion networks have always been two important parameters in
parallel computing. The first one reflects the smallest number
of links which have to be removed to split a network in
two equal parts, while the second one bounds the amount of
information that can be moved from one side of a network to
another. Finding the exact value of the bisection width has
proven to be challenging for some specific networks. For
instance, the problem of finding the exact bisection width
of the multidimensional torus was posed by Leighton [1,
Problem 1.281] and has remained open for almost 20 years.
Beyond interconnection networks for parallel architectures,
the bisection width is now also being used as a reference
parameter on the analysis of the latest topologies that are
being deployed in data centers. This can be seen in recent
papers which propose new topologies like BCube[2] or
DCell [3]. The bisection width is used to compare these new
topologies with basic ones, like grids, tori, and hypercubes,
or with currently used topologies, like trees and fat trees.

Basic interconnection topologies such as grids, tori, hy-
percubes, . . . , have also generated interest among the re-
searchers from the On-chip Interconnection Networks field

lately [4][5][6][7]. These basic topologies are being revisited
and the solution for these unsolved problems can also be
important for the future of the On-Chip Networking.

In the construction of interconnection networks, it has
proven to be useful to use the Cartesian product operation of
graphs to build large networks from smaller factor networks.
In particular, many popular interconnection networks are
instances of graphs obtained by the application of the
Cartesian product. Some examples are the grid, the torus
and the hypercube. In this paper we derive a technique to
bound the bisection width of several instances of product
graphs. In particular we present exact values for graphs
obtained as products of paths, rings, complete binary trees
(CBT), and extended complete binary trees (XT) [8]. The
same techniques are used for BCube.

A. Related Work

Youssef in [9], [10] presented the idea of working with
product networks as a divide and conquer problem. Youssef
exposes some important properties of product graphs in
terms of the properties of their factor graphs.

The bisection width of arrays and tori was explored in [1],
providing exact values for these networks with even number
of nodes per dimension, but leaving open the case when
there are odd number of nodes per dimension. Rolim et al.
[11] gave some first exact results for the bisection width of 2
and 3-dimensional arrays and torus (we do not include these
formulas for the sake of brevity) but left open the question
for longer number of dimensions.

For the special case in which all the factors are isomor-
phic, Efe and Fernández [12] provided a lower bound for
the bisection width of a product graph as BW (PGr(k)) =
kr+1

2C , being PGr(k) the cartesian product of r graphs
G(k), and being G(k) a k-nodes graph and C the maximal
congestion of G(k). (The maximal congestion is a new
parameter of graphs defined by them.). Also Nakano [13]
presented an interesting analysis for the bisection width
of isomorphic d-dimensional arrays and cliques, providing
exact results for both of them. Concretely, he proved that
the bisection width of a isomorphic d-dimensional clique
Kd
k , where k is the number of nodes of the complete graph

used as factor and d is the number of dimensions, is kd+1,



when k is even, and (k + 1) (kd−1)
4 , when k is odd. The

result provided for the bisection width of a isomorphic d-
dimensional array Adk is kd−1 when k is even, and (kd−1)

(k−1)
when k is odd.

The exact bisection width of the d-dimensional grid with
k nodes in each dimension, being k an odd number, was
also found to be kd−1

k−1 independently by Efe and Feng[14].
For the present paper it is very important the work by

Azizoglu and Egecioglu. In [15] and [16] they studied the
relations between the isoperimetric number and the bisection
width of different product networks. In the former paper,
they find the exact value of the bisection width of the
generalized cylinders with an even number of nodes in its
largest dimension. These networks are products of paths and
rings. In the latter one, they find the exact bisection width
of a d-dimensional array A(d) = Pk1×Pk2×· · ·×Pkd , with
ki nodes along dimension i, and where k1 ≤ k2 ≤ . . . ≤ kd.
The value of the bisection width they found is BW (A(d)) =∑d
i=α Ci, α being the largest index for which kα is even

and Ci = ki−1ki−2 . . . k1.

B. Contributions

In this paper we provide the exact value of the bisection
width of several families of product graphs. To do so, we
first provide two general results that allow to obtain upper
and lower bounds on the bisection width of the product
graph as a function of some properties of the factor graphs.
The application of these results for several families yield the
exact values.

One of the most interesting contribution of this paper
is the exact value bisection width of the torus, since, as
mentioned above, this problem has been open for almost 20
years. We find here that the exact value of the bisection width
of a d-dimensional torus T (d) = Rk1×Rk2×· · ·×Rkd , with
ki nodes along dimension i, and where k1 ≥ k2 ≥ . . . ≥ kd,
is BW (T (d)) = 2

∑α
i=1 Ci, α being the smallest index for

which ke is even and Ci = ki+1ki+2 · · · kd.
In addition to this result, we provide the exact value for the

bisection width of products of complete binary trees of any
size (mesh connected trees), products of extended complete
binary trees, products of CBTs and paths, and products of
extended complete binary trees and rings as well as lower
and upper bounds for BCube.

The rest of the paper is organized as follows. Section II
presents some basic definitions used in the rest of sections.
In Section III we provide some bounds on the bisection
bandwidth of product graphs and the values of congestion
and central cut of different basic graphs, which are used to
find the bisection bandwidth of multidimensional networks.
Section IV and Section V present our results for the bisection
bandwidth of some d-dimensional classical parallel topolo-
gies, respectively for products of complete binary trees and
paths and for products of rings and extended complete binary
trees. Bounds for the bisection bandwidth of BCube are

presented in Section VI. Finally, in Section VII we present
our conclusions and some interesting open problems.

II. DEFINITIONS

A. Graphs and Bisections

In this section we present definitions and notation that
will be used along the text. Given a graph G, we denote its
sets of vertices and edges as V (G) and E(G), respectively.
In some cases, when it is clear from the context, only V
or E will be used, omitting the graph G. Unless otherwise
stated, the graphs considered are undirected.

Given a graph G with n nodes, we use S(G) to denote a
subset of V (G) such that |S(G)| ≤ n

2 . We also use ∂GS(G)
to denote the set of edges connecting S(G) and V (G)\S(G).
Formally, ∂GS(G) = {(u, v) ∈ E(G) : u ∈ S(G), v ∈
G \S(G)}. The graph G may be omitted from this notation
when it is clear from the context.

The main object of these work is to calculate the bisection
width and bisection bandwidth of different product networks.
These bisections can be defined as follows.

Definition 1: The bisection width of an n-node graph G,
denoted BW (G), is the smallest number of edges which
have to be removed from G to partition it in two halves.
Formally, BW (G) = minS:|S|=bn2 c |∂

GS|.
Definition 2: The bisection bandwidth of a network/graph

G, denoted BBW (G), is the minimal amount of traffic
which can be transferred between any two halves of the
network when its links are transmitting at full speed.

In general, for regular graphs, we can assume that the
relation between the bisection bandwidth and the bisection
width is BBW (G) = BW (G) · T , where T is the capacity
of the links involved in the bisection bandwidth. We are
assuming, for simplicity, that all the links in the graph will
have the same capacity T .

B. Factor and Product Graphs

We define first the Cartesian product of graphs.
Definition 3: The d-dimensional Cartesian product of

graphs G1, G2, ..., Gd, denoted G1 ×G2 × · · · ×Gd, is the
graph with vertex set V (G1) × V (G2) × · · · × V (Gd), in
which vertices (u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are
adjacent if and only if (ui, vi) ∈ E(Gi) and uj = vj for all
j 6= i.

The graphs G1, G2, ..., Gd are called the factors of G1 ×
G2 × · · · ×Gd. Observe that G1 ×G2 × · · · ×Gd contains∏
j 6=i |V (Gj)| disjoint copies of Gi, which form dimension

i. We define now some of the basic factor graphs that will
be used in this and in the following sections.

Definition 4: The path of k vertices, denoted Pk, is a
graph such that V (Pk) = {0, 1, . . . , k − 1} and where
E(Pk) = {(i, i+ 1) : i ∈ [0, k − 2]} .

Definition 5: The complete graph (a.k.a. the clique) of
k vertices, denoted Kk, is a graph such that V (Kk) =



{0, 1, . . . , k − 1} and where E(Kk) = {(i, j) : (j 6=
i) ∧ (i, j ∈ V (Kk))}.

Definition 6: The r-complete graph of k vertices denoted
rKk, is a graph such that V (rKk) = {0, 1, . . . , k − 1} and
where E(rKk) is a multiset such that each pair of vertices
i, j ∈ V (rKk) are connected with r parallel edges. (i.e.,
each e ∈ E(rKk) has multiplicity r).

Using these and other graphs as factors, we will define,
across the text, different d-dimensional Cartesian product
graphs. For convenience, for these graphs we will use
the general notation G

(d)
k1,k2,...,kd

, where G is the name
of the graph, the superscript (d) means that it is a d-
dimensional graph, and k1, k2, . . . kd are the number of
vertices in each dimension. (Superscript and subscripts may
be omitted when clear from the context.) It will always
hold that k1 ≥ k2 ≥ . . . ≥ kd, i.e., the factor graphs are
sorted by decreasing number of vertices. We will often use
n to denote the number of nodes of the graph G(d)

k1,k2,...,kd
,

i.e., n = k1k2 · · · kd and we will always use α to denote
the index of the lowest dimension with an even number of
vertices (if there is no such dimension, α = d, where d is the
index of the lowest dimension). According to this notation
we will present different d-dimensional product graphs as
follows.

Definition 7: The d-dimensional array, denoted
A

(d)
k1,k2,...,kd

, is the Cartesian product of d
paths of k1, k2, . . . , kd vertices, respectively. I.e.,
A

(d)
k1,k2,...,kd

= Pk1 × Pk2 × · · · × Pkd .
Definition 8: The d-dimensional r-Hamming graph, de-

noted rH
(d)
k1,k2,...,kd

, is the Cartesian product of d r-
complete graphs of k1, k2, . . . , kd nodes, respectively. I.e.,
rH

(d)
k1,k2,...,kd

= rKk1 × rKk2 × · · · × rKkd .
Observe that the Hamming graph [17] is a particular case

of the r-Hamming graph, with r = 1. For brevity, we use
H

(d)
k1,k2,...,kd

instead of 1H
(d)
k1,k2,...,kd

, to denote the Hamming
graph.

C. Boundaries and Partitions

We define now the dimension-normalized boundary [16].
Definition 9: Let G(d)

k1,k2,...,kd
be a d-dimensional product

graph and S(G) a subset of V (G). Then, the dimension-
normalized boundary of S(G), denoted BG(S), is defined
as

BG(S) =
|∂G1 S|
σ1

+
|∂G2 S|
σ2

+ . . .+
|∂Gd S|
σd

, (1)

where, for each i ∈ [1, d], ∂Gi is ∂G applied to the dimension
i of G and

σi =

{
k2i if ki is even
k2i − 1 if ki is odd. (2)

Observation 1: For rH(d)
k1,k2,...,kd

, any subset S of nodes,
and any dimension i, it holds that |∂rHi S| = r · |∂Hi S|.
Hence,

BrH(S) =
|∂rH1 S|
σ1

+ · · ·+ |∂
rH
d S|
σd

= r

(
|∂H1 S|
σ1

+ · · ·+ |∂
H
d S|
σd

)
= rBH(S).

Let us define the lexicographic-order. Consider graph
H

(d)
k1,k2,...,kd

, we say that vertex x = (x1, x2, . . . , xd) pre-
cedes vertex y = (y1, y2, . . . , yd) in lexicographic-order if
there exists an index i such that xi < yi and xj = yj for
all j < i. Azizoglu and Egecioglu [17] proved the following
result.

Theorem 1 ([17]): Given a d-dimensional Hamming
graph H

(d)
k1,k2,...,kd

, with k1 ≥ k2 ≥ · · · ≥ kd. Let S be
any subset of V (H) and S̄ the set of first |S| vertices of H
in lexicographic-order1. Then BH(S̄) ≤ BH(S).

We finally define the function Ψ(x) as

Ψ(x) =

x∑
i=1

Ci =

d∏
j=i+1

kj , (3)

which corresponds to the result of the bisection width of
A

(d)
k1,k2,...,kd

, provided by [16], when x is equal to α. This
function will be used in following sections.

III. BOUNDS ON THE BISECTION WIDTH OF PRODUCT
GRAPHS

In this section we present general bounds on the bisection
width of product graphs as well as presenting two important
parameters, the normalized congestion and the central cut,
which are used to obtain them. These bounds will be used in
the upcoming sections to find the bisection width of several
instances of product graphs.

A. Lower bound

We start by defining the normalized congestion of a graph.
Let G be a graph with n nodes. Then, an embedding of graph
rKn onto G is a mapping of the edges of rKn into paths
in G. We define the congestion of G with multiplicity r,
denoted mr(G), as the minimum over all such embeddings
of the maximum number of embedded paths that contain an
edge from G. To formally define this concept, we first define
the congestion of an edge e ∈ E(G) under the embedding
Mr of rKn onto G, denoted cMr

(e), as

cMr (e) = |{e′ ∈ E(rKn) : e ∈Mr(e
′)}|. (4)

(Observe that Mr(e
′) ⊆ E(G) is a path in G.) Then, the

congestion mr(G) is

mr(G) = min
Mr∈E

max
e∈E(G)

{cMr (e)}, (5)

1Observe that, in Theorem 1, we have reversed the ordering of dimen-
sions with respect to the original theorem from Azizoglu and Egecioglu.



where E is the set of all possible embeddings of rKn onto
G.

Then, using Eqs. 5 and 2, we define the normalized
congestion of G as

βr(G) =
mr(G)

σ
. (6)

Having defined the normalized congestion, we proceed to
extend Theorem 1 to r-Hamming graphs.

Theorem 2: Given a d-dimensional r-Hamming graph
rH(d), let S be any vertex subset of V (rH(d)) and S̄ the
set of first |S| vertices of rH(d) in lexicographic-order. Then
BrH(S̄) ≤ BrH(S).

Proof: We prove the theorem by contradiction. Assume
that there is a set of vertices S 6= S̄ such that |S| = |S̄| and
BrH(X̄) > BrH(X). Then, applying Observation 1 to both
S and S̄, we obtain that

BH(S̄) =
BrH(S̄)

r
>
BrH(S)

r
= BH(S), (7)

which contradicts Theorem 1 and proves the theorem.
We now present the following lemma.
Lemma 1: Let S̄ be a subset of the vertices of graph

rH
(d)
k1,k2,...,kd

, such that S̄ are the first bn2 c vertices of rH
in lexicographical order, and n is the number of vertices of
rH . Then, the dimension-normalized boundary of S̄ is

BrH(S̄) =
r

4
Ψ(α).

Proof: We will derive first the value of BH(S̄), and
then use Observation 1 to prove the claim. It was shown in
[16], that ∂Hi S̄ = ∅ for all i > α.2 The number of edges in
each dimension i ∈ [1, α] on the boundary of S̄ in H is

|∂Hi S̄| =

{
ki
2 (
∏d
j=i+1 kj)

ki
2 if ki is even

ki−1
2 (

∏d
j=i+1 kj)

ki+1
2 if ki is odd.

(8)

Then, from the definition of BH(S̄), we obtain that

BH(S̄) =
k1−1

2 (
∏d
j=2 kj)

k1+1
2

k21 − 1
+

k2−1
2 (

∏d
j=3 kj)

k2+1
2

k22 − 1

+ · · ·+
kα
2 (
∏d
j=α+1 kj)

kα
2

k2α

=

∏d
j=2 kj

4
+

∏d
j=3 kj

4
+ · · ·+

∏d
j=α+1 kj

4

=

∑α
i=1 Ci
4

=
Ψ(α)

4
.

Finally, from Observation 1, we derive

BrH(S̄) = rBH(S̄) =
r

4
Ψ(α).

2Observe that they use reverse lexicographic order and sort dimensions
in the opposite order we do.

Using Definition 3, Lemma 1, and Eq. (5), we obtain the
following theorem.

Theorem 3: Let G = G1× . . .×Gd, where |V (Gi)| = ki
and k1 ≥ k2 ≥ . . . ≥ kd. Let βr(Gi) be the normalized
congestion of Gi with multiplicity r, for i ∈ [1, d]. Consider
any subset S ⊂ V (G) and the subset S̄ which contains the
first |S| vertices of G, in lexicographic order. Then,

BrH(S̄) ≤
d∑
i=1

βr(Gi)|∂Gi S|

Proof: First, observe that, for any Si ⊂ V (Gi),

|∂rKkiSi| ≤ mr(Gi) · |∂GiSi|. (9)

Then, for S ⊂ V (G) as defined,

|∂rHi S| ≤ mr(Gi) · |∂Gi S|.

Finally, using Theorem 2, we can state that

BrH(S̄) ≤ BrH(S)

≤ mr(G1)
|∂G1 S|
c1

+ · · ·+mr(Gd)
|∂Gd S|
cd

= βr(G1)|∂G1 S|+ · · ·+ βr(Gi)|∂Gd S|.

From this theorem, we derive a corollary for the case of
|S| = bn2 c:

Corollary 1: Let G = G1×. . .×Gd, where |V (Gi)| = ki
and k1 ≥ k2 ≥ . . . ≥ kd. Let βr(Gi) be the normalized
congestion of Gi for any r, for i ∈ [1, d]. Consider any
subset S ⊂ V (G) such that |S| = b |V (G)|

2 c. Then

r

4
Ψ(α) ≤

d∑
i=1

βr(Gi)|∂Gi S|.

B. Upper bound

Having proved the lower bound of the bisection width,
we follow with the upper bound. We define first the central
cut of a graph G.

Consider a graph G with n nodes, and a partition of V (G)
into three sets S−, S+, and S, such that |S−| = |S+| = bn2 c
(observe that if n is even then S = ∅, otherwise |S| = 1).
Then, the central cut of G, denoted CC(G), is

min
{S−,S+,S}

max{|∂GS−|, |∂GS+|}.

Observe that, for even n, the central cut is the bisection
width.

Now we use the definition of central cut in the following
theorem.

Theorem 4: Let G = G1× . . .×Gd, where |V (Gi)| = ki
and k1 ≥ k2 ≥ . . . ≥ kd. Then,

BW (G) ≤ max
i
{CC(Gi)} · Ψ(α).



Proof: It was shown in [16] how to bisect A(d) by
cutting exactly BW (A(d)) = Ψ(α) links. Furthermore, this
bisection satisfies that, if the paths Pki in dimension i are
cut, each of them can be partitioned into subpaths P+ and
P− of size bki2 c (connected by a link if ki is even or by a
node with links to both if ki is odd) so that the cut separates
P+ or P− from the rest of the path. Each path is then cut
by removing one link. We map the sets S+ and S+ of the
partition that gives the central cut of Gi to P+ and P−,
respectively. Then, any cut of a paths Pki in dimension i
becomes a cut of Gi with at most CC(Gi) links removed.

Then, if S is the subset of V (G) that ends at one side of
the bisection described above, we have that

|∂Gi S|
CC(Gi)

≤ |∂A
(d)

i S|, (10)

which also holds if the paths in dimension i are not cut.
Applying this to all dimensions, we obtain

|∂G1 S|
CC(G1)

+ · · ·+ |∂Gd S|
CC(Gd)

≤ BW (A(d)) = Ψ(α). (11)

This yields,

BW (G) ≤ |∂G1 S|+ · · ·+ |∂Gd S| ≤ max
i
{CC(Gi)} · Ψ(α),

proving Theorem 4.

IV. BISECTION WIDTH OF PRODUCTS OF CBTS AND
PATHS

In this section we will obtain the bisection bandwidth of
product graphs which result from the Cartesian product of
paths and CBTs. We will present, first, the different factor
graphs we are using and the product graphs we are bisecting,
then, we will compute the congestion and central cut of these
factor graphs and, finally, calculate the bisection width of
these product graphs.

A. Factor and product graphs

In this section we will work with paths, which were
defined in Section II, and CBTs, which we define now.

Definition 10: The complete binary tree of k vertices,
denoted CBTk , is a graph such that V (CBTk ) =
{1, 2, . . . , k}, with k = 2j − 1 (j is the number of levels of
the tree), and where E(CBTk ) = {(i, j) : ((j = 2i) ∨ (j =
2i+ 1)) ∧ (i ∈ [1, 2j−1 − 1])}.

Combining these factor graphs through the Cartesian
product, we obtain the product networks that we define
below.

Definition 11: A d-dimensional mesh-connected trees
and paths, denoted MCTP

(d)
k1,k2,...,kd

, is the Cartesian prod-
uct of d graphs of k1, k2, . . . , kd vertices, respectively, where
each factor graph is a complete binary tree or a path. I.e.,
MCTP

(d)
k1,k2,...,kd

= Gk1 × Gk2 × · · · × Gkd , where either
Gki = CBTki or Gki = Pki .

We also define the d-dimensional mesh-connected trees
[8], denoted MCT

(d)
k1,k2,...,kd

as the graph MCTP
(d)
k1,k2,...,kd

in which all the factor graphs are complete binary trees.
(Observe that the array is also the special case of
MCTP

(d)
k1,k2,...,kd

in which all the factor graphs are paths.)

B. Congestion and central cut of paths and CBTs

The bisection widths of the aforementioned product
graphs can be calculated using the bounds defined in Section
III. To do so, we need to compute first the values of the
normalized congestion and central cut of their factor graphs,
it is, of a path and of a CBT.

We will start by computing the congestion of a path and of
a CBT and, then, their central cuts. We present the following
lemma.

Lemma 2: The congestion of Pk with multiplicity r,
denoted mr(Pk), has two possible values, depending on
whether the number of vertices k is even or odd, as follows,

mr(Pk) =

{
r k

2

4 if k is even
r k

2−1
4 if k is odd

(12)

Proof: This proof is illustrated in Figure 1 where it
can be seen that there are two possible cases, depending
on whether k is even or odd. The congestion mr(Pk) is
defined as the minimum congestion over all embeddings of
rKk onto Pk. As there is only one possible path between
every pair of vertices, the congestion of an edge will always
be the same for any embedding Mr of rKk into Pk. Let Mr

be an embedding of rKk onto Pk. Then,

mr(Pk) = min
M∈E

max
e∈E(Pk)

{cM (e)} = max
e∈Pk
{cMr

(e)}. (13)

If we fix e = (i, i+1) ∈ E(Pk), i ∈ [0, k−1], the congestion
of e follows the equation:

cMr (e) = r(i+ 1)(k − i− 1). (14)

The value of i that maximizes cMr
(e) is i = k

2 − 1. As k is
an integer, depending on whether k is even or odd, k

2 will
be exact or not. Hence, we consider two possible cases,

i =

{
k
2 − 1 if k is even
k−1
2 − 1 if k is odd.

(15)

Using these values in Eq. (14) leads to the final result

mr(Pk) =

{
r k

2

4 if k is even
r k

2−1
4 if k is odd

Corollary 2: The normalized congestion of a path is
βr(Pk) = r 14 .

The value of the congestion of a CBT will be exactly the
same obtained for a path with an odd number of nodes. CBTs
share the property of the path of having only one possible
routing between two nodes. As can be seen in Figure 2,



(a) The 4-vertex path and the 4-vertex clique

(b) The 5-vertex path and the 5-vertex clique

Figure 1. Paths and possible cuts

Figure 2. The 7-vertex complete binary tree and the 7-vertex clique, with
their possible cuts

the possible cuts are similar. We present Lemma 3 for the
congestion of a CBT.

Lemma 3: The congestion of CBT k with multiplicity r,
denoted mr(CBT k) is

mr(CBT k) = r
k2 − 1

4
(16)

Proof: Let CBT 2j−1 be a complete binary tree of j
levels with k = 2j−1 nodes. Whichever edge we cut results
on two parts, one of them being another complete binary
tree, let us call it A and assume it has l < j levels; and the
other being the rest of the previous complete binary tree,
let us call it B. The number of nodes in A will be 2l − 1
while the number of nodes in B will be k− 2l + 1. For any
embedding M of rKk into CBT k, the congestion of any
edge e follows the equation

cMr (e) = r(2l − 1)(k − 2l + 1). (17)

The value of l which maximizes the equation is l = j−1,
which equivalent to cut one of the links of the root. This
divides the tree into subgraphs of sizes k+1

2 and k−1
2 . Then,

the final value for congestion will be

mr(CBT k) = r
k2 − 1

4

Corollary 3: The normalized congestion of a CBT is
βr(CBT k) = r 14 .

The central cut of both the path and CBT can be easily
deduced from Figures 1(a),1(b) and 2, being CC(Pk) =
CC(CBT k) = 1.

C. Bounds for the bisection width of products of CBTs and
paths

Having computed both the congestion and the central cut
of the possible factor graphs, we can calculate now the lower
and upper bound for the bisection width of a product of
CBTs and paths. We will start by the lower bound of the
bisection width.

Lemma 4: The bisection width of a d-dimensional mesh-
connected trees and paths, MCTP (d), is lower bounded by
Ψ(α).

Proof: As this graph is the result of a Cartesian product
of d CBTs and paths, we can apply Corollary 1, so

r

4
Ψ(α) ≤

d∑
i=1

βr(Gki)|∂MCTP
i S| (18)

when |S| = bn2 c and Gki is either a path or a CBT.
As we can see in Corollaries 2 and 3, the normalized

congestion of both factor graphs is the same, so it follows
that

r

4
Ψ(α) ≤

d∑
i=1

r

4
|∂MCTP
i S|, (19)

which yields,

BW (MCTP (d)) =

d∑
i=1

|∂MCTP
i S| ≥ Ψ(α). (20)

We follow now by presenting an upper bound for the
bisection width of d-dimensional mesh-connected trees and
paths.

Lemma 5: The bisection width of a d-dimensional mesh-
connected trees and paths, MCTP (d), is upper bounded by
Ψ(α).

Proof: Obviously, as this graph can also be embedded
into a d-dimensional array, we can use Theorem 4. We
know that the central cut of both CBTs and paths is 1
independently of their sizes or number of levels, and hence
also maxi{CC(Gki)} = 1 (where Gki is either a CBT or a
path). Then,

BW (MCTP (d)) ≤ Ψ(α). (21)

From the results obtained from Lemma 4 and Lemma 5
the proof of Theorem 5 follows.

Theorem 5: The bisection width of a d-dimensional
mesh-connected trees and paths MCTP

(d)
k1,k2,...,kd

is Ψ(α).



We can also present the following corollary for the
particular case of the d-dimensional mesh-connected trees
MCT

(d)
k1,k2,...,kd

.
Corollary 4: The bisection width of the d-dimensional

mesh-connected trees MCT
(d)
k1,k2,...,kd

is BW (MCT (d)) =
Ψ(d).

V. PRODUCTS OF RINGS AND EXTENDED TREES

Similarly to what was done in Section IV, in this section
we will obtain a result for the bisection bandwidth of the
product graphs which result from the Cartesian product of
rings and extended complete binary trees, a.k.a. XTs.

A. Factor and product graphs
The factor graphs which are going to be used in this

section are rings and XTs. We define them below.
Definition 12: The ring of k vertices, denoted Rk, is a

graph such that V (Rk) = {0, 1, . . . , k − 1} and where
E(Rk) = {(i, (i+ 1) mod k) : i ∈ V (Rk)} .

Definition 13: The extended complete binary tree (a.k.a.
XT) of k vertices, denoted Xk, is a complete binary tree in
which the leaves are connected as a path. More formally,
V (Xk) = V (CBTk ) and E(Xk) = E(CBTk )∪{(i, i+1) :
i ∈ [2j−1, 2j − 2]}.

Combining these graphs as factor graphs in a Cartesian
product, we can obtain the three following different kinds
of product graphs:

Definition 14: A d-dimensional mesh-connected extended
trees and rings, denoted MCXR

(d)
k1,k2,...,kd

, is the Cartesian
product of d graphs of k1, k2, . . . , kd vertices, respectively,
where each factor graph is a extended complete binary tree
or a ring. I.e., MCXR

(d)
k1,k2,...,kd

= Gk1 ×Gk2 × · · · ×Gkd ,
where either Gki = Xki or Gki = Rki .

Definition 15: The d-dimensional torus, denoted
T

(d)
k1,k2,...,kd

, is the Cartesian product of d rings
of k1, k2, . . . , kd vertices, respectively. I.e.,
T

(d)
k1,k2,...,kd

= Rk1 ×Rk2 × · · · ×Rkd .
And, as happened in Section IV with MCT (d), we

also define the d-dimensional mesh-connected extended
trees, denoted denoted MCX

(d)
k1,k2,...,kd

, a special case of
MCXR

(d)
k1,k2,...,kd

in which all factor graphs are extended
complete binary trees. (The torus is the special case of
MCXR

(d)
k1,k2,...,kd

in which all factor graphs are rings.)

B. Congestion and central cut of rings and XTs
The congestion and central cut of both a ring and an XT

are needed to calculate the bounds obtained in Section III.
We present the following lemma for the congestion of a ring.

Lemma 6: The congestion of Rk with multiplicity r = 2,
denoted mr(Rk), has two possible upper bounds depending
on whether the number of vertices k is even or odd, as
follows,

m2(Rk) ≤

{
1k

2

4 if k is even
1k

2−1
4 if k is odd

(22)

(a) The 4-vertex ring and the 4-vertex clique

(b) The 5-vertex ring and the 5-vertex clique

Figure 3. Rings and possible cuts

Proof: While a path had only one possible routing, for
Rk we have two possible routes connecting each pair of
nodes, what implies that the congestion of an edge depends
on the mapping of rKk into Rk.

If we embed rKk, for r = 2, into Rk, we can route each
of the parallel edges connecting two nodes through each of
the possible routings. This yields,

m2(Rk) ≤

{
2
k
2
k
2

2 = k2

4 if k is even

2
k−1
2

k+1
2

2 = k2−1
4 if k is odd.

Corollary 5: The normalized congestion of a ring is
β2(Rk) = 1

4 .
Similarly to what happened with paths and CBTs, the

congestion of rings and XTs is the same. The extended
complete binary tree Xk has a Hamiltonian cycle [8], so
we can find a ring Rk contained onto it. Consequently, the
congestion of an XT and a ring with the same number of
nodes will be the same. Then, the normalized congestion of
both factor graphs will also be the same.

Corollary 6: The normalized congestion of an XT is
β2(Xk) = 1

4 .
Due to these similarities, central cuts of both graphs are

also going to be the same. As can be easily deduced from
Figures 3(a),3(b) and 4, CC(Rk) = CC(Xk) = 2.

C. Bounds for the bisection width of products of XTs and
rings

As we did in Section IV, once we have computed the
results for the normalized congestion and central cut of the
different factor graphs, we can calculate the lower and upper
bound of the bisection width of products of XTs and rings.
We will start by the lower bound of the bisection width
presenting the following lemma.



Figure 4. Central cut on a extended complete binary tree

Lemma 7: The bisection width of a d-dimensional mesh-
connected XTs and rings, MCXR(d), is lower bounded by
2Ψ(α).

Proof: As the d-dimensional mesh-connected XTs and
rings is a Cartesian product of d rings and XTs, from
Corollary 1, we can state that

r

4
Ψ(α) ≤

d∑
i=1

βr(Gki)|∂MCXR
i S| (23)

when |S| = bn2 c and where r = 2 and Gki is either a
ring or an XT.

As we already know that the normalized congestion of
both factor graphs is β2(Rk) = β2(Xk) = 1

4 , we have that

BW (MCXR(d)) ≥ 2Ψ(α). (24)

We calculate now the upper bound for the bisection width
of a d-dimensional mesh-connected rings and XTs.

Lemma 8: The bisection width of a d-dimensional,
MCXR(d), is upper bounded by 2Ψ(α).

Proof: The d-dimensional mesh-connected XTs and
rings graph can also be embedded into a d-dimensional
array, so then, we can use Theorem 4. As happened with
the congestion, the value of the central cut of both XTs and
rings is the same, concretely, CC(Rk) = CC(Xk) = 2,
independently of their sizes or number of levels. Hence,
maxi{CC(Gki)} = 2 (where Gki is either a ring or an
XT). Then,

BW (MCXR(d)) ≤ 2Ψ(α). (25)

From Lemma 7 and Lemma 8, Theorem 6 follows.
Theorem 6: The bisection width of a d-dimensional

mesh-connected XTs and rings MCXR
(d)
k1,k2,...,kd

is 2Ψ(α).
From the bisection width of the d-dimensional mesh-

connected XTs and rings, we can derive the following
corollaries for the particular cases where all the factor graphs
are rings, Torus T (d), or XTs, mesh-connected extended
trees MCX (d).

Corollary 7: The bisection width of the d-dimensional
torus T (d)

k1,k2,...,kd
is BW (T (d)) = 2Ψ(α).

Corollary 8: The bisection width of the d-dimensional
mesh-connected extended trees MCX

(d)
k1,k2,...,kd

is
BW (MCX (d)) = 2Ψ(d).

VI. BCUBE

We devote this section to obtain bounds for the bisection
width of a d-dimensional BCube[2]. BCube is different from
the topologies considered in the previous sections because
it is obtained as the combination of basic networks formed
by a collection of k nodes (servers) connected by a switch.
These factor networks are combined into multidimensional
networks in the same way product graphs are obtained from
their factor graphs. This allows us to study the BCube as an
special instance of a product network. The d-dimensional
BCube can be obtained as the d dimensional product of
one-dimensional BCube networks, each one of k nodes.

A. Factor and product graphs

We first define a BCube and how a d-dimensional BCube
network is built from it.

Definition 16: A BCube of k nodes, denoted BC k, is
composed by k nodes connected to a k-ports switch. It can
be seen as a complete graph Kk where all the edges have
been replaced by a switch.

Combining this graph d times as a factor graph in the
Cartesian product, we obtain a d-dimensional BCube.

Definition 17: A d-dimensional BCube, denoted by
BC

(d)
k , is the Cartesian product of d BC k (the switches

are not considered nodes for the Cartesian product). I.e.,
BC

(d)
k = BC k × BC k × · · · × BC k.

BC
(d)
k can also be seen as a d-dimensional homogeneous

array where all the edges in each path have been removed
and replaced by a switch where two nodes (u1, ..., ui, ..., ud)
and (v1, ..., vi, ..., vd) are connected to the same switch if
and only if (ui 6= vi) and uj = vj for all j 6= i.

Although the logical interconnection model of a BC k is a
complete graph, we can not use it to calculate the bisection
bandwidth of the network as we need to know the number
of physical links that we will remove, not the logical ones.
We present two possible models for BC k.

The first one, Model-A or star-like model, denoted by
BC (A)k, consists in k nodes connected one-to-one to a
virtual node which represents the switch. The second one,
Model-B or hyperlink model, denoted by BC (B)k, consists
in k nodes connected by a hyperlink.

The main reason for obtaining the bisection width of a
d-dimensional BCube is to be able to bound its bisection
bandwidth. However, as the d-dimensional BCube is not
a regular graph, the bisection width can have different
forms depending on where the communication bottleneck
occurs in a BCube graph. While the two presented models
are logically equivalent to a complete graph, they have a
different behavior from the traffic point of view.



(a) Model A: 5-node Star-like BCube

(b) Congestion of a 5-node Star-like BCube

S
-

S
+

S

(c) Central cut of a 5-node Star-like BCube

Figure 5. Model A of a 5-node BCube and its congestion and central cut

Let us consider that we have a BC 3 where the links have
a speed of 100 Mbps while the switch can switch at 1 Gbps.
Under these conditions, the links become the bottleneck of
the network and, even when the switches would be able
to provide a bisection bandwidth of 1 Gbps, the effective
bisection bandwidth is only of 200 Mbps in both directions.

Consider the opposite situation now, where the BCube
switch only supports 500 Mbps of internal traffic while the
links transmit at 1 Gbps. In this case, the switches are the
bottleneck of the network and the bisection bandwidth is
only 500 Mbps, although the links would be able to support
up to 1 Gbps.

The first example illustrates an scenario where we would
bisect the network by removing the links that connect the
servers to the switches, corresponding it to Model A. On the
other hand, what we find in example 2 is a perfect scenario
for Model B, where we would do better by removing entire
switches when bisecting the network. Concretely, being s the
switching capacity of a switch, and T the traffic supported
by a link, we will choose Model A when s ≥ bk2 c · 2T and
model s ≤ 2T

B. Congestion and central cut of BCube

We will compute now the congestion and central cut of
both models in order to be able to calculate the respective
lower and upper bounds. We start by the congestion and
central cut of Model-A.

Model-A is also called star-like model. The name of star-
like comes from the fact that the factor graph can be seen

as a star with the switch in the center. If we set r = 1, the
congestion of every link of the star is easily found to be
mr(BC (A)k) = k − 13 as shown in Figure 5(b).

Corollary 9: The normalized congestion of BC (A)k is

βr(BC (A)k) =

{
k−1
k2 if k is even
1
k+1 if k is odd.

The central cut, which is also trivial and can be found in
Figure 5(c), will depend on whether the number of nodes k
is even or odd,

CC(BC (A)k) =

{
k
2 if k is even
k−1
2 if k is odd.

Having computed the congestion and the central cut for
Model-A, we will compute them now for Model-B. We also
call Model-B hyperlink model4 due to the fact that all the
servers from the BCube are connected by a hyperlink so no
switch is needed.

Calculating the congestion of a Model-B BCube will be
easy then. If we set r = 1 there will be only one edge to be
removed, the congestion of the graph will be total amount
of edges of its equivalent Kk, i. e., mr(BC (B)k) = k(k−1)

2 .
Corollary 10: The normalized congestion of BC (B)k is

βr(BC (B)k) =

{
k−1
k if k is even
k
k+1 if k is odd.

As for Model-A, the central cut is easily computed.
As there is only one hyperlink, its central cut will be
CC(BC (B)k) = 1.

C. Bounds for the bisection width of BCube

Having computed the congestion and central cut of both
models, we can calculate the lower and upper bounds of the
bisection width of each one of them.

We will start by the lower and upper bound of the
bisection width of model A and, then, we will calculate both
bounds for model B.

We first present the following lemma for the lower bound
of the bisection width of a Model-A BCube.

Lemma 9: The bisection width of a Model-A d-
dimensional Bcube, BC (A)

(d)
k , is lower bounded by kd+1

4(k−1)

if k is even, and by k+1
4

kd−1
k−1 if k is odd.

Proof: Using the value of the congestion of a Model-A
BCube in Corollary 1, it follows that

BW (BC(A)
(d)
k ) ≥

{
1
4
k2

k−1Ψ(α) = kd+1

4(k−1) if k is even
1
4
k2−1
k−1 Ψ(α) = k+1

4
kd−1
k−1 if k is odd

3Note that in the computation of the congestion, the switch is not
considered a node of the graph.

4This model is quite similar to the one proposed by Pan in [18].



(a) Model B: 5-node hyperlink BCube

(b) Congestion of a 5-node hyperlink BCube
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(c) Central cut of a 5-node hyperlink BCube

Figure 6. Model B of a 5-node BCube and its congestion and central cut

After proving the lower bound for the bisection width of
a Model-A d-dimensional BCube, we follow with the upper
bound.

Lemma 10: The bisection width of a Model-A d-
dimensional Bcube, BC (A)

(d)
k , is upper bounded by kd

2 if
k is even, and by kd−1

2 if k is odd.
Proof: The Cartesian product of Model-A star-like

factor graphs can be embedded into a d-dimensional array,
so Theorem 4 will be extremely useful again. If we apply
the values of the central cut of Model-A in Theorem 4, is
immediate to compute the following upper bound

BW (BC (A)
(d)
k ) ≤

{
kd

2 if k is even
kd−1

2 if k is odd.

Now, from the combination of Lemma 9 and Lemma 10
we can state Theorem 7:

Theorem 7: The value of the bisection width of a Model-
A d-dimensional Bcube, BC (A)

(d)
k , is in the interval

[ kd+1

4(k−1) ,
kd

2 ] if k is even, and in the interval [k+1
4

kd−1
k−1 ,

kd−1
2 ]

if k is odd.
Let us calculate now the bounds of a Model-B d-

dimensional BCube. As we did with Model A, we will first
prove the lower bound and then the upper one. For the lower
bound we present the following lemma.

Lemma 11: The bisection width of a Model-B d-
dimensional Bcube, BC (B)

(d)
k , is lower bounded by kd

2(k−1)

if k is even, and by k+1
2k

kd−1
k−1 if k is odd.

Proof: Like in the case of Model A, we use the value
of the congestion of Model B in Corollary 1. Since all the
dimensions have the same size k, it follows that

BW (BC(B)
(d)
k ) ≥

{
kd

2(k−1) if k is even
k+1
2k

kd−1
k−1 if k is odd

We present now Lemma 12 for the upper bound of the
bisection width of a Model-B d-dimensional Bcube.

Lemma 12: The bisection width of a Model-B d-
dimensional Bcube, BC (B)

(d)
k , is upper bounded by kd−1

k−1 .
Proof: As for model A, the d-dimensional BCube

resulting from the Cartesian product of Model-B graphs can
be embedded into a d-dimensional array. Thanks to this
fact, we can use the computed value of its central cut in
Theorem 4 to obtain the upper bound of the bisection width,

BW (BC(B)
(d)
k ) ≤ 1 · Ψ(α) =

kd − 1

k − 1
.

Combining both Lemmas, 9 and 10, we can state Theo-
rem 7.

Theorem 8: The value of the bisection width of a
Model-B d-dimensional Bcube, BC (B)

(d)
k , is in the in-

terval [ kd

2(k−1) ,
1−kd
1−k ] if k is even, and in the interval

[k+1
2k

kd−1
k−1 ,

kd−1
k−1 ] if k is odd.

VII. CONCLUSIONS

Exact results for the bisection bandwidth of various d-
dimensional classical parallel topologies have been provided
in this paper. These results consider any number of dimen-
sions and any size, odd or even, for the factor graphs. These
multidimensional graphs are based on factor graphs such
as paths, rings, complete binary trees or extended complete
binary trees. Upper and lower bounds for the bisection width
of a d-dimensional BCube are also provided.

Some of the products used the same factor graph multiple
times, like the d-dimensional torus, mesh-connected trees or
mesh-connected extended trees and some other combined
different factor graphs, like the mesh connected trees and
paths or mesh-connected extended trees and rings.

An interesting open problem is how to obtain the exact
value of the bisection width of graph obtained by combining
paths and rings (cylinders) and other combinations not
considered in this paper. Similarly, obtaining an exact result
for the bisection bandwidth of the d-dimensional BCube
remains as an open problem.
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