• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Methodology for the Automated Detection and Classification of Networking Anomalies

Share
Files
PID6411971.pdf (377.6Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/804
Metadata
Show full item record
Author(s)
Moulay, Mohamed; García, Rafael; Mancuso, Vincenzo; Fernández Anta, Antonio; Rojo, Pablo; Lazaro, Javier
Date
2020-07-06
Abstract
The active growth and dynamic nature of cellular networks makes challenging accommodating end-users with flawless quality of service. Identification of network problems leveraging on machine learning has gained a lot of visibility in the past few years, resulting in dramatically improved cellular network services. In this paper, we present a novel methodology to automate the fault identification process in a cellular network and to classify network anomalies, which combines supervised and unsupervised machine learning algorithms. Our experiments using real data from operational commercial mobile networks show that our method can automatically identify and classify networking anomalies, so to enable timely and precise troubleshooting actions.
Share
Files
PID6411971.pdf (377.6Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/804
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!