• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Energy Saving Potential of Static and Adaptive Resource Provisioning in Dense Cellular Networks

Share
Files
Energy_Saving_Potential_Static_Adaptive_Resource_Provisioning_Dense_Cellular_Networks_2018_EN.pdf (211.9Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/557
Metadata
Show full item record
Author(s)
Rizzo, Gianluca; Ajmone Marsan, Marco
Date
2018-01-03
Abstract
In this paper we study static and dynamic approaches to energy efficiency in dense cellular networks, where interference is one of the main limiting factors. We consider the two main approaches to energy efficiency through adaptive management of the network capacity: Base station (BS) sleeping and cell zooming. We propose an analytic framework for the assessment of the energy efficiency potential of several joint planning and management strategies. Our approach is based on stochastic geometry tools, on an approximate but accurate model of interference, and on a detailed, measurement-driven power model. For a given user density, we show how to derive the optimal BS density, and the BS transmit power which minimizes the mean power consumption of the network, while achieving a target QoS level. Through numerical evaluations, we show the potential savings enabled by joint (and disjoint) optimization of transmit power and density of active BSs. For a realistic network scenario, our approach suggests that huge energy savings are achievable by combining sleeping and zooming. In addition, we show that a static strategy, based on carefully planning the density of installed BS and their transmit power, can achieve most of the benefits of capacity tuning achievable through either sleeping or zooming. This result has a very high relevance for network operators, since it allows avoiding the feared decrease in operational lifetime which the daily switching of BS entails.
Share
Files
Energy_Saving_Potential_Static_Adaptive_Resource_Provisioning_Dense_Cellular_Networks_2018_EN.pdf (211.9Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/557
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!