• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Opp-Relay: Managing Directionality and Mobility Issues of Millimeter-Wave via D2D Communication

Share
Files
main.pdf (2.244Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/308
Metadata
Show full item record
Author(s)
Sim, Gek Hong; Asadi, Arash; Loch, Adrian; Hollick, Matthias; Widmer, Joerg
Date
2017-01-04
Abstract
The directionality of millimeter-Wave (mm-Wave) communication results in challenging network dynamics and thus complex system design. A key problem with such networks is human blockage, which is highly detrimental since absorption at mm-Wave frequencies is extremely high. This poses a significant challenge for the state-of-the-art technologies in 5G networks such as Device-to-Device (D2D) communication. Essentially, the aforementioned dynamics hinder direct communication between devices. Existing protocols in the mm-Wave band such as IEEE 802.11ad address this problem using relays. However, the complexity relay discovery in these protocols grows linearly with the number of users, Hence, these approaches are infeasible for crowded areas such as malls or busy pedestrian streets. In this paper, we present a lightweight relaying mechanism called Opp-Relay that builds on the existing D2D features of the 3GPP standard to opportunistically discover an mm-Wave enabled relay. Specifically, we provide an algorithm to compute the optimal beamwidth for opportunistic discovery of a relay in dense and dynamic network environments. We validate our approach in practice using our experimental testbed operating in the 60 GHz band. Our experiments demonstrate that choosing a suitable beamwidth to discover and communicate with a relay node is crucial. Moreover, we show that our relaying mechanism significantly reduces the complexity of relay discovery.
Share
Files
main.pdf (2.244Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/308
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!