• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tracking mm-Wave Channel Dynamics: Fast Beam Training Strategies under Mobility

Share
Files
INFOCOM 2017 - De Donno.pdf (3.757Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/307
Metadata
Show full item record
Author(s)
Palacios, Joan; De Donno, Danilo; Widmer, Joerg
Date
2017-05-01
Abstract
In order to cope with the severe path loss, millimeter-wave (mm-wave) systems exploit highly directional communication. As a consequence, even a slight beam misalignment between two communicating devices (for example, due to mobility) can generate a significant signal drop. This leads to frequent invocations of time-consuming mechanisms for beam re-alignment, which deteriorate system performance. In this paper, we propose smart beam training and tracking strategies for fast mm-wave link establishment and maintenance under node mobility. We leverage the ability of hybrid analog-digital transceivers to collect channel information from multiple spatial directions simultaneously and formulate a probabilistic optimization problem to model the temporal evolution of the mm-wave channel under mobility. In addition, we present for the first time a beam tracking algorithm that extracts information needed to update the steering directions directly from data packets, without the need for spatial scanning during the ongoing data transmission. Simulation results, obtained by a custom simulator based on ray tracing, demonstrate the ability of our beam training/tracking strategies to keep the communication rate only 10% below the optimal bound. Compared to the state of the art, our approach provides a 40% to 150% rate increase, yet requires lower complexity hardware.
Share
Files
INFOCOM 2017 - De Donno.pdf (3.757Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/307
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!