• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pallas: A Data-Plane-Only Approach to Accurate Persistent Flow Detection on Programmable Switches in High-Speed Networks

Compartir
Ficheros
Pallas_ICNP25.pdf (560.2Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1983
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Li, Weihe; Bütün, Beyza; Chu, Tianyue; Fiore, Marco; Patras, Paul
Fecha
2025-09-22
Resumen
In high-speed data center networks, persistent flows are repeatedly observed over extended periods, potentially signaling threats such as stealthy DDoS or botnet attacks. Monitoring every flow in production-grade hardware switches that feature limited memory, however, is challenging under typical high flow rates and data volumes. To tackle this, approximate data structures, like sketches, are often employed. Yet many existing methods rely on per-time-window flag resets, which require frequent control-plane interventions that make them unsuitable for high-speed traffic. This paper introduces PALLAS, a fully data-plane-implementable sketch for detecting persistent flows in high-speed networks with high accuracy, obviating the need for time-window-based resets. We further propose OPT-PALLAS, an enhanced variant of PALLAS that improves detection accuracy by incorporating flow arrival patterns. We present a rigorous error bound analysis for both PALLAS and OPT-PALLAS, along with extensive performance evaluations using a P4-based prototype on an Intel Tofino switch. PALLAS scales persistent flow detection to line-rate capacity, while state-of-the-art solutions fail to operate beyond a few Mbps. Our results show that PALLAS and OPT-PALLAS can accurately detect persistent flows in traffic volumes over 60× higher than those handled by the best existing approach. Additionally, even under low-speed traffic, PALLAS and OPT-PALLAS achieve 4.21% and 7.85% higher lookup accuracy while consuming only 8.5% and 9.7% of switch resources, respectively. Extensive trace-driven results on a CPU platform further validate the high detection accuracy of OPT-PALLAS compared to existing methods.
Compartir
Ficheros
Pallas_ICNP25.pdf (560.2Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1983
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!