• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the Boundaries of On-Device Inference: When Tiny Falls Short, Go Hierarchical

Compartir
Ficheros
Exploring_the_Boundaries_of_On_Device_Inference__When_Tiny_Falls_Short__Go_Hierarchical (1).pdf (5.087Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1958
DOI: 10.1109/JIOT.2025.3583477
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Behera, Adarsh Prasad; Daubaris, Paulius; Bravo Aramburu, Iñaki; Gallego Delgado, José; Morabito, Roberto; Widmer, Joerg; Champati, Jaya Prakash
Fecha
2025-07
Resumen
On-device inference offers significant benefits in edge ML systems, such as improved energy efficiency, responsiveness, and privacy, compared to traditional centralized approaches. However, the resource constraints of embedded devices limit their use to simple inference tasks, creating a trade-off between efficiency and capability. In this context, the Hierarchical Inference (HI) system has emerged as a promising solution that augments the capabilities of the local ML by offloading selected samples to an edge server/cloud for remote ML inference. Existing works, primarily based on simulations, demonstrate that HI improves accuracy. However, they fail to account for the latency and energy consumption in real-world deployments, nor do they consider three key heterogeneous components that characterize ML-enabled IoT systems: hardware, network connectivity, and models. To bridge this gap, this paper systematically evaluates HI against standalone on-device inference by analyzing accuracy, latency, and energy trade-offs across five devices and three image classification datasets. Our findings show that, for a given accuracy requirement, the HI approach we designed achieved up to 73% lower latency and up to 77% lower device energy consumption than an on-device inference system. Despite these gains, HI introduces a fixed energy and latency overhead from on-device inference for all samples. To address this, we propose a hybrid system called Early Exit with HI (EE-HI) and demonstrate that, compared to HI, EE-HI reduces the latency up to 59.7% and lowers the device’s energy consumption up to 60.4%. These findings demonstrate the potential of HI and EE-HI to enable more efficient ML in IoT systems.
Compartir
Ficheros
Exploring_the_Boundaries_of_On_Device_Inference__When_Tiny_Falls_Short__Go_Hierarchical (1).pdf (5.087Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1958
DOI: 10.1109/JIOT.2025.3583477
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!