• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profiling- and learning-based co-design of communication and compute in scalable robotics

Compartir
Ficheros
1571070934_jsac_final_submission.pdf (2.717Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1934
ISSN: 1558-0008
DOI: 10.1109/JSAC.2025.3574600
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fresa, Andrea; Ferrrarese, Nicola; Liu, Yu; Ferizbegovic, Mina; Hernandez Herranz, Aitor
Fecha
2025-06-05
Resumen
The proposal of Cloud/Fog Automation introduces a new architecture for industrial automation, which breaks the boundaries between information technology, operational technology, and communication technology domains, facilitating information sharing and optimizing the system as a whole. This paper extends the vision of Cloud/Fog Automation to scalable robotics, which is deployed across the device-edge-cloud continuum using cloud-native technologies and calls for a co-design methodology that jointly considers communication, compute, and application characteristics. From an industrial practitioner’s viewpoint, we demonstrate its feasibility with a comprehensive approach to optimizing a mobile robot application. We leverage a dual-phase optimization strategy: static optimization pre-deployment and dynamic optimization post-deployment. In the static optimization phase, we employ a profiling-based method to minimize communication overhead while balancing computational load. The dynamic optimization phase utilizes a reinforcement learning-based approach to explore an optimal policy for computation offloading and network quality of service configuration to maximize edge server utilization and lower network usage costs while guaranteeing application performance. Experimental results, validated through a Simulation-to-Reality (Sim-to-Real) approach, demonstrate that our co-design method significantly enhances operational efficiency, reduces network costs, and improves overall system responsiveness.
Compartir
Ficheros
1571070934_jsac_final_submission.pdf (2.717Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1934
ISSN: 1558-0008
DOI: 10.1109/JSAC.2025.3574600
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!