• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Label-Aware Aggregation for Improved Federated Learning

Share
Files
Final version (658.3Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1742
Metadata
Show full item record
Author(s)
Khalil, Ahmad; Wainakh, Aidmar; Zimmer, Ephraim; Parra-Arnau, Javier; Fernández Anta, Antonio; Meuser, Tobias; Steinmetz, Ralf
Date
2023-09
Abstract
Federated Averaging (FedAvg) is the most common aggregation method used in Federated learning, which performs a weighted averaging of the updates based on the sizes of the individual datasets of each client. A raising discussion in the research community suggests that FedAvg might not be the optimal method since, for instance, it does not fully take into account the variety of the client data distributions. In this paper, we propose a label-aware aggregation method FedLA, that addresses the biased models issue by considering the variety of labels in the weighted averaging. It combines two main properties of the client data, namely data size and label distribution. Through extensive experiments, we demonstrate that FedLA is particularly effective in several heterogeneous data distribution scenarios. Especially when only a small group of the clients is participating in the Federated Learning process. Furthermore, we argue that accurately describing the data distribution is crucial in selecting the appropriate aggregation method. In this regard, we discuss various properties that can be used to describe data distribution and illustrate how these properties can guide the choice of an aggregation method for specific data distributions.
Share
Files
Final version (658.3Kb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1742
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!