• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Content-Aware Adaptive Point Cloud Delivery

Share
Files
Content-Aware_Adaptive_Point_Cloud_Delivery.pdf (1.251Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1699
Metadata
Show full item record
Author(s)
Alkhalili, Yassin; Gruczyk, Thomas; Meuser, Tobias; Fernández Anta, Antonio; Khalil, Ahmad; Mauthe, Andreas
Date
2022-12-05
Abstract
Point clouds are an important enabler for a wide range of applications in various domains, including autonomous vehicles and virtual reality applications. Hence, the practical applicability of point clouds is gaining increasing importance and presenting new challenges for communication systems where large amounts of data need to be shared with low latency. Point cloud content can be very large, especially when multiple objects are involved in the scene. Major challenges of point clouds delivery are related to streaming in bandwidth-constrained networks and to resource-constrained devices. In this work, we are exploiting object-related knowledge, i.e., content-driven metrics, to improve the adaptability and efficiency of point clouds transmission. This study proposes applying a 3D point cloud semantic segmentation deep neural network and using object-related knowledge to assess the importance of each object in the scene. Using this information, we can semantically adapt the bit rate and utilize the available bandwidth more efficiently. The experimental results conducted on a real-world dataset showed that we can significantly reduce the requirement for multiple object point cloud transmission with limited quality degradation compared to the baseline without modifications.
Share
Files
Content-Aware_Adaptive_Point_Cloud_Delivery.pdf (1.251Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1699
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!