• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Handling Data Handoff of AI-based Applications in Edge Computing Systems

Share
Files
openLeon_TNSM.pdf (4.263Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1697
ISSN: 1932-4537
DOI: 10.1109/TNSM.2023.3267942
Metadata
Show full item record
Author(s)
Scotece, Domenico; Fiandrino, Claudio; Foschini, Luca
Date
2023-04
Abstract
Edge computing aims at better supporting low-latency applications. One of its key techniques is computation offloading, the process that outsources computing tasks from resourced-constrained mobile devices and moves them to edge data centers. In this paper, we tackle an emerging problem within the umbrella of computation offloading, i.e., migration of offloaded inference tasks of Artificial Intelligence (AI) trained models. Such context tailors migration aspects of data-sensitive services where i) the value of the updates is inversely proportional to the data age and ii) outage is highly detrimental to accuracy. To tackle this challenge, we propose Mobile Edge Data-handoff (MED) a framework able to relocate inference or online training tasks from one edge datacenter to another by moving only the necessary data to minimize any accuracy drop during the process. We implemented MED in a well-known edge computing emulator, openLEON, and experimentally verified its performance with an AI-based Industry 4.0 application that forecasts the gas flow in a chemical plant. For our experiments, we use a real, open-source dataset that contains sensors readings. Collected results show that MED, employing proactive data handoff algorithms, is able to minimize the packet loss during the handoff thereby providing guarantees on the inference accuracy.
Share
Files
openLeon_TNSM.pdf (4.263Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1697
ISSN: 1932-4537
DOI: 10.1109/TNSM.2023.3267942
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!