• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

VoronoiBoost: Data-driven Probabilistic Spatial Mapping of Mobile Network Metadata

Share
Files
Voronois2_secon (4).pdf (4.379Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1643
Metadata
Show full item record
Author(s)
Martínez-Durive, Orlando E.; Couturieux, Theo; Ziemlicki, Cezary; Fiore, Marco
Date
2022-10-25
Abstract
Mapping information collected at the level of individual base stations onto the geographical space is a required operation for many works relying on mobile network metadata. The common practice is to represent base station coverage as Voronoi cells, and assume that users are uniformly distributed therein. In this paper, we leverage a large-scale dataset of realistic spatial association probabilities to over 5,000 operational base stations, and quantify the substantial problems of such a simplistic mapping approach. To address the limitations of legacy Voronoi representations, we develop VoronoiBoost, a data-driven model that scales Voronoi cells to match the probabilistic distribution of users associated to each base station. VoronoiBoost relies on the same input as traditional Voronoi decompositions, but provides a richer and more accurate rendering of where users are located: hence, it can be readily used by researchers to substantially improve the spatial representation of mobile network metadata. Our experiments demonstrate that VoronoiBoost improves the quality of mapping by 44% on average over standard Voronoi cells. We also showcase the utility of our model in a practical Edge network planning use case, where the information produced by VoronoiBoost drives a deployment up to 28% more accurate than that obtained with Voronoi cells.
Share
Files
Voronois2_secon (4).pdf (4.379Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1643
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!