• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vector Coded Caching Multiplicatively Increases the Throughput of Realistic Downlink Systems

Share
Files
VectorCC_TWC_CameraReady.pdf (2.509Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1629
Metadata
Show full item record
Author(s)
Zhao, Hui; Bazco-Nogueras, Antonio; Elia, Petros
Date
2022-10
Abstract
The recent introduction of vector coded caching has revealed that multi-rank transmissions in the presence of receiver-side cache content can dramatically ameliorate the file-size bottleneck of coded caching and substantially boost performance in error-free wire-like channels. In this work, we employ large-matrix analysis to explore the effect of vector coded caching in realistic wireless multi-antenna downlink systems. For a given downlink MISO system already optimized to exploit both multiplexing and beamforming gains, and for a fixed set of antenna and SNR resources, our analysis answers a simple question: What is the multiplicative throughput boost obtained from introducing reasonably sized receiver-side caches that can pre-store information content? The derived closed-form expressions capture various linear precoders, and a variety of practical considerations such as power dissemination across signals, realistic SNR values, as well as feedback costs. The schemes are very simple (we simply collapse precoding vectors into a single vector), and the recorded gains are notable. For example, for 32 transmit antennas, a received SNR of 20 dB, a coherence bandwidth of 300 kHz, a coherence period of 40 ms, and under realistic file-size and cache-size constraints, vector coded caching is here shown to offer a multiplicative throughput boost of about 310% with ZF/RZF precoding and a 430% boost in the performance of already optimized MF-based (cacheless) systems. Interestingly, vector coded caching also accelerates channel hardening to the benefit of feedback acquisition, often surpassing 540% gains over traditional hardening-constrained cacheless downlink systems.
Share
Files
VectorCC_TWC_CameraReady.pdf (2.509Mb)
Identifiers
URI: https://hdl.handle.net/20.500.12761/1629
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!