• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic Evaluation of Indoor Wireless Network Performance with Data-Driven Propagation Models

Compartir
Ficheros
Main article (1.206Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1612
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Bakirtzis, Stefanos; Wassell, Ian; Fiore, Marco; Zhang, Jie
Fecha
2022-12
Resumen
Cell densification through the installation of small- cells and femtocells in indoor environments is an emerging solution to enhance the operation of wireless networks. The deployment of new components within the heart of the radio access network calls for expedient tools that assist and ensure their optimal placement within the existing network infrastructure. In this paper, we introduce metrics that can characterize indoor wireless network performance (IWNP) in terms of coverage and capacity, and we evaluate them via physics-based propagation models. In particular, we exploit a deterministic propagation model, i.e., a ray-tracer, as well as a novel machine learning-based propagation model. We demonstrate that data-driven propagation models can be leveraged for the rigorous evaluation of the IWNP metrics, yielding a remarkable computational efficiency compared to the conventional deterministic models. The use of physics-based site- specific propagation models allows for the particularities of each indoor geometry to be taken into account, and also makes feasible the consideration of uncertainties related to the indoor environment. In this case, the IWNP metrics are expressed as stochastic quantities and a stochastic solution is derived through an efficient polynomial chaos expansion representation, enabling on-the-fly computation of the IWNP metrics statistics.
Compartir
Ficheros
Main article (1.206Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1612
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!