• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SPARCS: A Sparse Recovery Approach for Integrated Communication and Human Sensing in mmWave Systems

Share
Files
2205.03263.pdf (3.790Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1588
Metadata
Show full item record
Author(s)
Pegoraro, Jacopo; Lacruz, Jesús Omar; Rossi, Michele; Widmer, Joerg
Date
2022-05-04
Abstract
A well established method to detect and classify human movements using Millimeter-Wave ( mmWave) devices is the time-frequency analysis of the small-scale Doppler effect (termed micro-Doppler) of the different body parts, which requires a regularly spaced and dense sampling of the Channel Impulse Response ( CIR). This is cur- rently done in the literature either using special-purpose radar sen- sors, or interrupting communications to transmit dedicated sensing waveforms, entailing high overhead and channel utilization. In this work we present SPARCS, an integrated human sensing and commu- nication solution for mmWave systems. SPARCS is the first method that reconstructs high quality signatures of human movement from irregular and sparse CIR samples, such as the ones obtained during communication traffic patterns. To accomplish this, we formulate the micro-Doppler extraction as a sparse recovery problem, which is critical to enable a smooth integration between communication and sensing. Moreover, if needed, our system can seamlessly inject short CIR estimation fields into the channel whenever communica- tion traffic is absent or insufficient for the micro-Doppler extraction. SPARCS effectively leverages the intrinsic sparsity of the mmWave channel, thus drastically reducing the sensing overhead with re- spect to available approaches. We implemented SPARCS on an IEEE 802.11ay Software Defined Radio (SDR) platform working in the 60 GHz band, collecting standard-compliant CIR traces match- ing the traffic patterns of real WiFi access points. Our results show that the micro-Doppler signatures obtained by SPARCS enable a typical downstream application such as human activity recognition with more than 7 times lower overhead with respect to existing methods, while achieving better recognition performance.
Share
Files
2205.03263.pdf (3.790Mb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1588
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!