• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SOLOR: Self-Optimizing WLANs with Legacy-Friendly Opportunistic Relays

Share
Files
TR-IMDEA-Networks-2012-1.pdf (398.8Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1389
DOI: TR-IMDEA-Networks-2012-1
Metadata
Show full item record
Author(s)
Garcia-Saavedra, Andres; Rengarajan, Balaji; Serrano, Pablo; Camps-Mur, Daniel; Costa-Perez, Xavier
Date
2012-12
Abstract
Current IEEE 802.11 WLANs suffer from the well- known rate anomaly problem, which can drastically reduce network performance. Opportunistic relaying can address this problem, but three major considerations, typically considered separately by prior work, need to be taken into account for an efficient deployment in real-world systems: 1) relaying could imply increased power consumption, and nodes might be hetero- geneous, both in power source (e.g., battery-powered vs. socket- powered) and power consumption profile; 2) similarly, nodes in the network are expected to have heterogeneous throughput needs and preferences in terms of the throughput vs. energy consumption trade-off; and 3) any proposed solution should be backwards-compatible, given the large number of legacy 802.11 devices already present in existing networks. In this paper, we propose a novel framework, Self-Optimizing, Legacy-Friendly Opportunistic Relaying (SOLOR), which jointly takes into account the above considerations and greatly improves network performance even in systems comprised mostly of vanilla nodes and unmodified access points. SOLOR jointly optimizes the topology of the network, i.e., which are the nodes associated to each relay-capable node; and the relay schedules, i.e., how the relays split time between the downstream nodes they relay for and the upstream flow to an access point. The results, obtained for a large variety of scenarios and different node preferences, illustrate the significant gains achieved by our approach. Its feasibility is demonstrated through test-bed experimentation in a realistic deployment.
Share
Files
TR-IMDEA-Networks-2012-1.pdf (398.8Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1389
DOI: TR-IMDEA-Networks-2012-1
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!