• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Practical adaptive user association policies for wireless systems with dynamic interference

Share
Files
Practical_adaptive_user_association_policies_-_2011_EN.pdf (967.2Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1201
ISSN: 1063-6692
Metadata
Show full item record
Author(s)
Rengarajan, Balaji; de Veciana, Gustavo
Date
2011-12-15
Abstract
We study the impact of user association policies on flow-level performance in interference-limited wireless networks. Most research in this area has used static interference models(neighboring base stations are always active) and resorted to intuitive objectives such as load balancing. In this paper, we show that this can be counterproductive in the presence of dynamic interference which couples the transmission rates to users at various base stations. We propose a methodology to optimize the performance of a class of coupled systems, and apply it to study the user association problem. We show that by properly inducing load asymmetries, substantial performance gains can be achieved relative to a load balancing policy (e.g., 15 times reduction in mean delay). We present a practical, measurement-based, interference-aware association policy that infers the degree of interference-induced coupling and adapts to it. Systematic simulations establish that both our optimized static and adaptive association policies substantially outperform various dynamic policies which can, in extreme cases even be susceptible to Braess’s paradox like phenomena, i.e., an increase in the number of base stations can lead to worse performance under greedy association policies. Further, these results are robust to changes in file size distributions, large-scale propagation parameters, and spatial load distributions.
Subject
Q Science::Q Science (General)
Q Science::QA Mathematics::QA75 Electronic computers. Computer science
T Technology::T Technology (General)
T Technology::TA Engineering (General). Civil engineering (General)
T Technology::TK Electrical engineering. Electronics Nuclear engineering
Share
Files
Practical_adaptive_user_association_policies_-_2011_EN.pdf (967.2Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1201
ISSN: 1063-6692
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!