• español
    • English
  • Login
  • English 
    • español
    • English
  • Publication Types
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
View Item 
  •   IMDEA Networks Home
  • View Item
  •   IMDEA Networks Home
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resource utilization mechanism for multi-rate ultrawide band networks

Share
Files
Resource_Utilization_Mechanism_-_2010_EN.pdf (183.8Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1180
Metadata
Show full item record
Author(s)
Al-Zubi, Raed T; Krunz, Marwan; Lopes, Leo
Date
2010-12-06
Abstract
Ultra-wideband (UWB) communications has emerged as a burgeoning technology for high data rate wireless personal area networks (WPANs). In this paper, we propose a novel resource utilization mechanism (RUM) for improving the throughput in multi-rate UWB-based WPANs. RUM is intended to remedy a critical issue in both unicast and multicast transmissions. In unicast (single- and multi-hop), the connectivity of a source-destination pair is defined by the ability to overhear control messages (e.g., route requests, request-to-send/clear-tosend, etc.). These messages are usually sent at a low transmission rate to extend their reachability, hence a node can directly communicate with faraway destinations. Such destinations cannot be reliably reached by high transmission rates. This leads to a long channel reservation time and hence a high blocking probability for prospective reservations and low network throughput. In the case of multicast, the maximum transmission rate is bottlenecked by the farthest destination. RUM exploits opportunistic-relaying and time-spreading techniques to improve link reliability and increase the transmission rate, and hence network throughput. Simulations are used to demonstrate the performance gain of RUM.
Subject
Q Science::Q Science (General)
Q Science::QA Mathematics::QA75 Electronic computers. Computer science
T Technology::T Technology (General)
T Technology::TA Engineering (General). Civil engineering (General)
T Technology::TK Electrical engineering. Electronics Nuclear engineering
Share
Files
Resource_Utilization_Mechanism_-_2010_EN.pdf (183.8Kb)
Identifiers
URI: http://hdl.handle.net/20.500.12761/1180
Metadata
Show full item record

Browse

All of IMDEA NetworksBy Issue DateAuthorsTitlesKeywordsTypes of content

My Account

Login

Statistics

View Usage Statistics

Dissemination

emailContact person Directory wifi Eduroam rss_feed News
IMDEA initiative About IMDEA Networks Organizational structure Annual reports Transparency
Follow us in:
Community of Madrid

EUROPEAN UNION

European Social Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

European Structural and Investment Fund

© 2021 IMDEA Networks. | Accesibility declaration | Privacy Policy | Disclaimer | Cookie policy - We value your privacy: this site uses no cookies!